Pipeline to Detect Anatomical Structures (Single Entity - biobert)

Description

This pretrained pipeline is built on the top of ner_anatomy_coarse_biobert model.

Predicted Entities

Anatomy

Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("ner_anatomy_coarse_biobert_pipeline", "en", "clinical/models")

text = '''content in the lung tissue'''

result = pipeline.fullAnnotate(text)
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("ner_anatomy_coarse_biobert_pipeline", "en", "clinical/models")

val text = "content in the lung tissue"

val result = pipeline.fullAnnotate(text)
import nlu
nlu.load("en.med_ner.anatomy_coarse_biobert.pipeline").predict("""content in the lung tissue""")

Results

|    | ner_chunk   |   begin |   end | ner_label   |   confidence |
|---:|:------------|--------:|------:|:------------|-------------:|
|  0 | lung tissue |      15 |    25 | Anatomy     |      0.99155 |

Model Information

Model Name: ner_anatomy_coarse_biobert_pipeline
Type: pipeline
Compatibility: Healthcare NLP 4.4.4+
License: Licensed
Edition: Official
Language: en
Size: 422.0 MB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • BertEmbeddings
  • MedicalNerModel
  • NerConverter