Description
This pretrained pipeline is built on the top of mesh_umls_mapper
model.
Predicted Entities
Available as Private API Endpoint
How to use
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("mesh_umls_mapping", "en", "clinical/models")
result = pipeline.fullAnnotate(["C028491", "D019326", "C579867"])
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
val pipeline = new PretrainedPipeline("mesh_umls_mapping", "en", "clinical/models")
val result = pipeline.fullAnnotate(["C028491", "D019326", "C579867"])
import nlu
nlu.load("en.mesh.umls.mapping").predict("""Put your text here.""")
Results
| | mesh_code | umls_code |
|--:|----------:|----------:|
| 0 | C028491 | C0043904 |
| 1 | D019326 | C0045010 |
| 2 | C579867 | C3696376 |
Model Information
Model Name: | mesh_umls_mapping |
Type: | pipeline |
Compatibility: | Healthcare NLP 4.4.4+ |
License: | Licensed |
Edition: | Official |
Language: | en |
Size: | 3.9 MB |
Included Models
- DocumentAssembler
- TokenizerModel
- ChunkMapperModel