Description
This pretrained pipeline maps ICD10CM codes to UMLS codes without using any text data. You’ll just feed white space-delimited ICD10CM codes and it will return the corresponding UMLS codes as a list. If there is no mapping, the original code is returned with no mapping.
Predicted Entities
Available as Private API Endpoint
How to use
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("icd10cm_umls_mapping", "en", "clinical/models")
result = pipeline.fullAnnotate(['M8950', 'R822', 'R0901'])
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
val pipeline = new PretrainedPipeline("icd10cm_umls_mapping", "en", "clinical/models")
val result = pipeline.fullAnnotate(['M8950', 'R822', 'R0901'])
import nlu
nlu.load("en.icd10cm.umls.mapping").predict("""Put your text here.""")
Results
|   | icd10cm_code | umls_code |
|--:|-------------:|----------:|
| 0 |        M8950 |  C4721411 |
| 1 |         R822 |  C0159076 |
| 2 |        R0901 |  C0004044 |
Model Information
| Model Name: | icd10cm_umls_mapping | 
| Type: | pipeline | 
| Compatibility: | Healthcare NLP 4.4.4+ | 
| License: | Licensed | 
| Edition: | Official | 
| Language: | en | 
| Size: | 956.6 KB | 
Included Models
- DocumentAssembler
 - TokenizerModel
 - ChunkMapperModel