Description
This pretrained pipeline is built on the top of icd10_icd9_mapper
model.
Predicted Entities
Available as Private API Endpoint
How to use
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("icd10_icd9_mapping", "en", "clinical/models")
result = pipeline.fullAnnotate(["Z833", "A0100", "A000"])
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
val pipeline = new PretrainedPipeline("icd10_icd9_mapping", "en", "clinical/models")
val result = pipeline.fullAnnotate(["Z833", "A0100", "A000"])
import nlu
nlu.load("en.icd10_icd9.mapping").predict("""Put your text here.""")
Results
| | icd10cm_code | icd9_code |
|--:|-------------:|----------:|
| 0 | Z833 | V180 |
| 1 | A0100 | 0020 |
| 2 | A000 | 0010 |
Model Information
Model Name: | icd10_icd9_mapping |
Type: | pipeline |
Compatibility: | Healthcare NLP 4.4.4+ |
License: | Licensed |
Edition: | Official |
Language: | en |
Size: | 593.6 KB |
Included Models
- DocumentAssembler
- TokenizerModel
- ChunkMapperModel