Pipeline to Extract entities in clinical trial abstracts (BertForTokenClassification)

Description

This pretrained pipeline is built on the top of bert_token_classifier_ner_clinical_trials_abstracts model.

Predicted Entities

Age, AllocationRatio, Author, BioAndMedicalUnit, CTAnalysisApproach, CTDesign, Confidence, Country, DisorderOrSyndrome, DoseValue, Drug, DrugTime, Duration, Journal, NumberPatients, PMID, PValue, PercentagePatients, PublicationYear, TimePoint, Value

Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("bert_token_classifier_ner_clinical_trials_abstracts_pipeline", "en", "clinical/models")

text = '''This open-label, parallel-group, two-arm, pilot study compared the beta-cell protective effect of adding insulin glargine (GLA) vs. NPH insulin to ongoing metformin. Overall, 28 insulin-naive type 2 diabetes subjects (mean +/- SD age, 61.5 +/- 6.7 years; BMI, 30.7 +/- 4.3 kg/m(2)) treated with metformin and sulfonylurea were randomized to add once-daily GLA or NPH at bedtime.'''

result = pipeline.fullAnnotate(text)
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("bert_token_classifier_ner_clinical_trials_abstracts_pipeline", "en", "clinical/models")

val text = "This open-label, parallel-group, two-arm, pilot study compared the beta-cell protective effect of adding insulin glargine (GLA) vs. NPH insulin to ongoing metformin. Overall, 28 insulin-naive type 2 diabetes subjects (mean +/- SD age, 61.5 +/- 6.7 years; BMI, 30.7 +/- 4.3 kg/m(2)) treated with metformin and sulfonylurea were randomized to add once-daily GLA or NPH at bedtime."

val result = pipeline.fullAnnotate(text)
from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("bert_token_classifier_ner_clinical_trials_abstracts_pipeline", "en", "clinical/models")

text = '''This open-label, parallel-group, two-arm, pilot study compared the beta-cell protective effect of adding insulin glargine (GLA) vs. NPH insulin to ongoing metformin. Overall, 28 insulin-naive type 2 diabetes subjects (mean +/- SD age, 61.5 +/- 6.7 years; BMI, 30.7 +/- 4.3 kg/m(2)) treated with metformin and sulfonylurea were randomized to add once-daily GLA or NPH at bedtime.'''

result = pipeline.fullAnnotate(text)

Results

|    | ner_chunk        |   begin |   end | ner_label          |   confidence |
|---:|:-----------------|--------:|------:|:-------------------|-------------:|
|  0 | open-label       |       5 |    14 | CTDesign           |     0.742075 |
|  1 | parallel-group   |      17 |    30 | CTDesign           |     0.725741 |
|  2 | two-arm          |      33 |    39 | CTDesign           |     0.427547 |
|  3 | insulin glargine |     105 |   120 | Drug               |     0.985063 |
|  4 | GLA              |     123 |   125 | Drug               |     0.96917  |
|  5 | NPH insulin      |     132 |   142 | Drug               |     0.762519 |
|  6 | metformin        |     155 |   163 | Drug               |     0.996344 |
|  7 | 28               |     175 |   176 | NumberPatients     |     0.968501 |
|  8 | type 2 diabetes  |     192 |   206 | DisorderOrSyndrome |     0.979685 |
|  9 | 61.5             |     235 |   238 | Age                |     0.610416 |
| 10 | kg/m(2           |     273 |   278 | BioAndMedicalUnit  |     0.974807 |
| 11 | metformin        |     295 |   303 | Drug               |     0.99696  |
| 12 | sulfonylurea     |     309 |   320 | Drug               |     0.996722 |
| 13 | randomized       |     327 |   336 | CTDesign           |     0.990632 |
| 14 | once-daily       |     345 |   354 | DrugTime           |     0.472084 |
| 15 | GLA              |     356 |   358 | Drug               |     0.972978 |
| 16 | NPH              |     363 |   365 | Drug               |     0.989424 |
| 17 | bedtime          |     370 |   376 | DrugTime           |     0.936016 |

Model Information

Model Name: bert_token_classifier_ner_clinical_trials_abstracts_pipeline
Type: pipeline
Compatibility: Healthcare NLP 4.4.4+
License: Licensed
Edition: Official
Language: en
Size: 404.9 MB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • MedicalBertForTokenClassifier
  • NerConverterInternalModel