RxNorm to MeSH Code Mapping

Description

This pretrained pipeline maps RxNorm codes to MeSH codes without using any text data. You’ll just feed white space-delimited RxNorm codes and it will return the corresponding MeSH codes as a list. If there is no mapping, the original code is returned with no mapping.

Predicted Entities

Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline 

pipeline = PretrainedPipeline("rxnorm_mesh_mapping","en","clinical/models")
result = pipeline.annotate(["1191", "6809", "47613"])
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
val pipeline = new PretrainedPipeline("rxnorm_mesh_mapping","en","clinical/models")
val result = pipeline.annotate(["1191", "6809", "47613"])
import nlu
nlu.load("en.resolve.rxnorm.mesh").predict("""["1191", "6809", "47613"]""")

Results

|   | rxnorm | mesh_code |
|--:|-------:|----------:|
| 0 |   1191 |   D001241 |
| 1 |   6809 |   D008687 |
| 2 |  47613 |   D019355 |


Note: 

| RxNorm     | Details             | 
| ---------- | -------------------:|
| 1191       | aspirin             |
| 6809       | metformin           |
| 47613      | calcium citrate     |

| MeSH       | Details             |
| ---------- | -------------------:|
| D001241    | Aspirin             |
| D008687    | Metformin           |
| D019355    | Calcium Citrate     |

Model Information

Model Name: rxnorm_mesh_mapping
Type: pipeline
Compatibility: Healthcare NLP 4.4.4+
License: Licensed
Edition: Official
Language: en
Size: 103.6 KB

Included Models

  • DocumentAssembler
  • TokenizerModel
  • LemmatizerModel
  • Finisher