Description
This pretrained pipeline is built on the top of re_test_problem_finding model.
Predicted Entities
Admission_Discharge
, Age
, Alcohol
, Allergen
, BMI
, Birth_Entity
, Blood_Pressure
, Cerebrovascular_Disease
, Clinical_Dept
, Communicable_Disease
, Date
, Death_Entity
, Diabetes
, Diet
, Direction
, Disease_Syndrome_Disorder
, Dosage
, Drug
, Duration
, EKG_Findings
, Employment
, External_body_part_or_region
, Family_History_Header
, Fetus_NewBorn
, Form
, Frequency
, Gender
, HDL
, Heart_Disease
, Height
, Hyperlipidemia
, Hypertension
, ImagingFindings
, Imaging_Technique
, Injury_or_Poisoning
, Internal_organ_or_component
, Kidney_Disease
, LDL
, Labour_Delivery
, Medical_Device
, Medical_History_Header
, Modifier
, O2_Saturation
, Obesity
, Oncological
, Overweight
, Oxygen_Therapy
, Pregnancy
, Procedure
, Psychological_Condition
, Pulse
, Race_Ethnicity
, Relationship_Status
, RelativeDate
, RelativeTime
, Respiration
, Route
, Section_Header
, Sexually_Active_or_Sexual_Orientation
, Smoking
, Social_History_Header
, Strength
, Substance
, Substance_Quantity
, Symptom
, Temperature
, Test
, Test_Result
, Time
, Total_Cholesterol
, Treatment
, Triglycerides
, VS_Finding
, Vaccine
, Vital_Signs_Header
, Weight
How to use
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("re_test_problem_finding_pipeline", "en", "clinical/models")
pipeline.fullAnnotate("Targeted biopsy of this lesion for histological correlation should be considered.")
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
val pipeline = new PretrainedPipeline("re_test_problem_finding_pipeline", "en", "clinical/models")
pipeline.fullAnnotate("Targeted biopsy of this lesion for histological correlation should be considered.")
import nlu
nlu.load("en.relation.test_problem_finding.pipeline").predict("""Targeted biopsy of this lesion for histological correlation should be considered.""")
Results
| index | relations | entity1 | chunk1 | entity2 | chunk2 |
|-------|--------------|--------------|---------------------|--------------|---------|
| 0 | 1 | PROCEDURE | biopsy | SYMPTOM | lesion |
Model Information
Model Name: | re_test_problem_finding_pipeline |
Type: | pipeline |
Compatibility: | Healthcare NLP 4.4.4+ |
License: | Licensed |
Edition: | Official |
Language: | en |
Size: | 1.7 GB |
Included Models
- DocumentAssembler
- SentenceDetector
- TokenizerModel
- PerceptronModel
- WordEmbeddingsModel
- MedicalNerModel
- NerConverter
- DependencyParserModel
- RelationExtractionModel