Pipeline to Detect Drugs and posology entities including experimental drugs and cycles (ner_posology_experimental)

Description

This pretrained pipeline is built on the top of ner_posology_experimental model.

Predicted Entities

Administration, Cyclecount, Cycleday, Cyclelength, Cyclenumber, Dosage, Drug, Duration, Form, Frequency, Route, Strength

Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("ner_posology_experimental_pipeline", "en", "clinical/models")

text = '''Y-90 Humanized Anti-Tac: 10 mCi (if a bone marrow transplant was part of the patient's previous therapy) or 15 mCi of yttrium labeled anti-TAC; followed by calcium trisodium Inj (Ca DTPA)..

Calcium-DTPA: Ca-DTPA will be administered intravenously on Days 1-3 to clear the radioactive agent from the body.'''

result = pipeline.fullAnnotate(text)
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("ner_posology_experimental_pipeline", "en", "clinical/models")

val text = "Y-90 Humanized Anti-Tac: 10 mCi (if a bone marrow transplant was part of the patient's previous therapy) or 15 mCi of yttrium labeled anti-TAC; followed by calcium trisodium Inj (Ca DTPA)..

Calcium-DTPA: Ca-DTPA will be administered intravenously on Days 1-3 to clear the radioactive agent from the body."

val result = pipeline.fullAnnotate(text)
import nlu
nlu.load("en.med_ner.posology_experimental.pipeline").predict("""Y-90 Humanized Anti-Tac: 10 mCi (if a bone marrow transplant was part of the patient's previous therapy) or 15 mCi of yttrium labeled anti-TAC; followed by calcium trisodium Inj (Ca DTPA)..

Calcium-DTPA: Ca-DTPA will be administered intravenously on Days 1-3 to clear the radioactive agent from the body.""")

Results

|    | ner_chunk                |   begin |   end | ner_label   |   confidence |
|---:|:-------------------------|--------:|------:|:------------|-------------:|
|  0 | Anti-Tac                 |      15 |    22 | Drug        |     0.8797   |
|  1 | 10 mCi                   |      25 |    30 | Dosage      |     0.5403   |
|  2 | 15 mCi                   |     108 |   113 | Dosage      |     0.6266   |
|  3 | yttrium labeled anti-TAC |     118 |   141 | Drug        |     0.9122   |
|  4 | calcium trisodium Inj    |     156 |   176 | Drug        |     0.397533 |
|  5 | Calcium-DTPA             |     191 |   202 | Drug        |     0.9794   |
|  6 | Ca-DTPA                  |     205 |   211 | Drug        |     0.9544   |
|  7 | intravenously            |     234 |   246 | Route       |     0.9518   |
|  8 | Days 1-3                 |     251 |   258 | Cycleday    |     0.83325  |

Model Information

Model Name: ner_posology_experimental_pipeline
Type: pipeline
Compatibility: Healthcare NLP 4.4.4+
License: Licensed
Edition: Official
Language: en
Size: 1.7 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverterInternalModel