Description
This pretrained pipeline is built on the top of bert_token_classifier_ner_bionlp model.
Predicted Entities
Amino_acid, Anatomical_system, Cancer, Cell, Cellular_component, Developing_anatomical_structure, Gene_or_gene_product, Immaterial_anatomical_entity, Multi-tissue_structure, Organ, Organism, Organism_subdivision, Organism_substance, Pathological_formation, Simple_chemical, Tissue
How to use
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("bert_token_classifier_ner_bionlp_pipeline", "en", "clinical/models")
text = '''Both the erbA IRES and the erbA/myb virus constructs transformed erythroid cells after infection of bone marrow or blastoderm cultures. The erbA/myb IRES virus exhibited a 5-10-fold higher transformed colony forming efficiency than the erbA IRES virus in the blastoderm assay.'''
result = pipeline.fullAnnotate(text)
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
val pipeline = new PretrainedPipeline("bert_token_classifier_ner_bionlp_pipeline", "en", "clinical/models")
val text = "Both the erbA IRES and the erbA/myb virus constructs transformed erythroid cells after infection of bone marrow or blastoderm cultures. The erbA/myb IRES virus exhibited a 5-10-fold higher transformed colony forming efficiency than the erbA IRES virus in the blastoderm assay."
val result = pipeline.fullAnnotate(text)
import nlu
nlu.load("en.classify.token_bert.biolp.pipeline").predict("""Both the erbA IRES and the erbA/myb virus constructs transformed erythroid cells after infection of bone marrow or blastoderm cultures. The erbA/myb IRES virus exhibited a 5-10-fold higher transformed colony forming efficiency than the erbA IRES virus in the blastoderm assay.""")
Results
|    | ner_chunk           |   begin |   end | ner_label              |   confidence |
|---:|:--------------------|--------:|------:|:-----------------------|-------------:|
|  0 | erbA IRES           |       9 |    17 | Organism               |     0.999188 |
|  1 | erbA/myb virus      |      27 |    40 | Organism               |     0.999434 |
|  2 | erythroid cells     |      65 |    79 | Cell                   |     0.999837 |
|  3 | bone                |     100 |   103 | Multi-tissue_structure |     0.999846 |
|  4 | marrow              |     105 |   110 | Multi-tissue_structure |     0.999876 |
|  5 | blastoderm cultures |     115 |   133 | Cell                   |     0.999823 |
|  6 | erbA/myb IRES virus |     140 |   158 | Organism               |     0.999751 |
|  7 | erbA IRES virus     |     236 |   250 | Organism               |     0.999749 |
|  8 | blastoderm          |     259 |   268 | Cell                   |     0.999897 |
Model Information
| Model Name: | bert_token_classifier_ner_bionlp_pipeline | 
| Type: | pipeline | 
| Compatibility: | Healthcare NLP 4.4.4+ | 
| License: | Licensed | 
| Edition: | Official | 
| Language: | en | 
| Size: | 404.8 MB | 
Included Models
- DocumentAssembler
 - SentenceDetectorDLModel
 - TokenizerModel
 - MedicalBertForTokenClassifier
 - NerConverter