Pipeline to Extract Negation and Uncertainty Entities from Spanish Medical Texts

Description

This pretrained pipeline is built on the top of ner_negation_uncertainty model.

Predicted Entities

Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("ner_negation_uncertainty_pipeline", "es", "clinical/models")

text = '''e realiza analítica destacando creatinkinasa 736 UI, LDH 545 UI, urea 63 mg/dl, CA 19.9 64,1 U/ml. Inmunofenotípicamente el tumor expresó vimentina, S-100, HMB-45 y actina. Se instauró el tratamiento con quimioterapia (Cisplatino, Interleukina II, Dacarbacina e Interferon alfa).'''

result = pipeline.fullAnnotate(text)
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("ner_negation_uncertainty_pipeline", "es", "clinical/models")

val text = "e realiza analítica destacando creatinkinasa 736 UI, LDH 545 UI, urea 63 mg/dl, CA 19.9 64,1 U/ml. Inmunofenotípicamente el tumor expresó vimentina, S-100, HMB-45 y actina. Se instauró el tratamiento con quimioterapia (Cisplatino, Interleukina II, Dacarbacina e Interferon alfa)."

val result = pipeline.fullAnnotate(text)

Results

|chunk                                                 |ner_label|
+------------------------------------------------------+---------+
|probable de                                           |UNC      |
|cirrosis hepática                                     |USCO     |
|no                                                    |NEG      |
|conocida previamente                                  |NSCO     |
|no                                                    |NEG      |
|se realizó paracentesis control por escasez de liquido|NSCO     |
|susceptible de                                        |UNC      |
|ca basocelular perlado                                |USCO     |

Model Information

Model Name: ner_negation_uncertainty_pipeline
Type: pipeline
Compatibility: Healthcare NLP 4.4.4+
License: Licensed
Edition: Official
Language: es
Size: 318.7 MB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • RoBertaEmbeddings
  • MedicalNerModel
  • NerConverterInternalModel