Pipeline to Mapping MESH Codes with Their Corresponding UMLS Codes

Description

This pretrained pipeline is built on the top of mesh_umls_mapper model.

Predicted Entities

Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("mesh_umls_mapping", "en", "clinical/models")

result = pipeline.fullAnnotate(C028491 D019326 C579867)
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("mesh_umls_mapping", "en", "clinical/models")

val result = pipeline.fullAnnotate(C028491 D019326 C579867)
import nlu
nlu.load("en.mesh.umls.mapping").predict("""Put your text here.""")

Results

|    | mesh_code                   | umls_code                      |
|---:|:----------------------------|:-------------------------------|
|  0 | C028491 | D019326 | C579867 | C0043904 | C0045010 | C3696376 |

Model Information

Model Name: mesh_umls_mapping
Type: pipeline
Compatibility: Healthcare NLP 4.4.4+
License: Licensed
Edition: Official
Language: en
Size: 3.9 MB

Included Models

  • DocumentAssembler
  • TokenizerModel
  • ChunkMapperModel