Description
This pipeline is trained with lightweight glove_100d
embeddings and can be used to deidentify PHI information from medical texts. The PHI information will be masked and obfuscated in the resulting text. The pipeline can mask and obfuscate LOCATION
, CONTACT
, PROFESSION
, NAME
, DATE
, ID
, AGE
, MEDICALRECORD
, ORGANIZATION
, HEALTHPLAN
, DOCTOR
, USERNAME
, URL
, LOCATION-OTHER
, DEVICE
, CITY
, ZIP
, STATE
, PATIENT
, COUNTRY
, STREET
, PHONE
, HOSPITAL
, EMAIL
, IDNUM
, BIOID
, FAX
, SSN
, ACCOUNT
, DLN
, PLATE
, VIN
, LICENSE
entities.
Predicted Entities
LOCATION
, CONTACT
, PROFESSION
, NAME
, DATE
, ID
, AGE
, MEDICALRECORD
, ORGANIZATION
, HEALTHPLAN
, DOCTOR
, USERNAME
, URL
, LOCATION-OTHER
, DEVICE
, CITY
, ZIP
, STATE
, PATIENT
, COUNTRY
, STREET
, PHONE
, HOSPITAL
, EMAIL
, IDNUM
, BIOID
, FAX
, SSN
, ACCOUNT
, DLN
, PLATE
, VIN
, LICENSE
How to use
from sparknlp.pretrained import PretrainedPipeline
deid_pipeline = PretrainedPipeline("clinical_deidentification_slim", "en", "clinical/models")
sample = """Name : Hendrickson, Ora, Record date: 2093-01-13, # 719435.
Dr. John Green, ID: 1231511863, IP 203.120.223.13.
He is a 60-year-old male was admitted to the Day Hospital for cystectomy on 01/13/93.
Patient's VIN : 1HGBH41JXMN109286, SSN #333-44-6666, Driver's license no:A334455B.
Phone (302) 786-5227, 0295 Keats Street, San Francisco, E-MAIL: smith@gmail.com."""
result = deid_pipeline.annotate(sample)
print("\n".join(result['masked']))
print("\n".join(result['masked_with_chars']))
print("\n".join(result['masked_fixed_length_chars']))
print("\n".join(result['obfuscated']))
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
val deid_pipeline = new PretrainedPipeline("clinical_deidentification_slim","en","clinical/models")
val sample = """Name : Hendrickson, Ora, Record date: 2093-01-13, # 719435.
Dr. John Green, ID: 1231511863, IP 203.120.223.13.
He is a 60-year-old male was admitted to the Day Hospital for cystectomy on 01/13/93.
Patient's VIN : 1HGBH41JXMN109286, SSN #333-44-6666, Driver's license no:A334455B.
Phone (302) 786-5227, 0295 Keats Street, San Francisco, E-MAIL: smith@gmail.com."""
val result = deid_pipeline.annotate(sample)
import nlu
nlu.load("en.de_identify.clinical_slim").predict("""Name : Hendrickson, Ora, Record date: 2093-01-13, # 719435.
Dr. John Green, ID: 1231511863, IP 203.120.223.13.
He is a 60-year-old male was admitted to the Day Hospital for cystectomy on 01/13/93.
Patient's VIN : 1HGBH41JXMN109286, SSN #333-44-6666, Driver's license no:A334455B.
Phone (302) 786-5227, 0295 Keats Street, San Francisco, E-MAIL: smith@gmail.com.""")
Results
Masked with entity labels
------------------------------
Name : <PATIENT>, Record date: <DATE>, # <MEDICALRECORD>.
Dr. <DOCTOR>, ID: <IDNUM>, IP <IPADDR>.
He is a <AGE> male was admitted to the <HOSPITAL> for cystectomy on <DATE>.
Patient's VIN : <VIN>, SSN <SSN>, Driver's license <DLN>.
Phone <PHONE>, <STREET>, <CITY>, E-MAIL: <EMAIL>.
Masked with chars
------------------------------
Name : [**************], Record date: [********], # [****].
Dr. [********], ID: [********], IP [************].
He is a [*********] male was admitted to the [**********] for cystectomy on [******].
Patient's VIN : [***************], SSN [**********], Driver's license [*********].
Phone [************], [***************], [***********], E-MAIL: [*************].
Masked with fixed length chars
------------------------------
Name : ****, Record date: ****, # ****.
Dr. ****, ID: ****, IP ****.
He is a **** male was admitted to the **** for cystectomy on ****.
Patient's VIN : ****, SSN ****, Driver's license ****.
Phone ****, ****, ****, E-MAIL: ****.
Obfuscated
------------------------------
Name : Layne Nation, Record date: 2093-03-13, # C6240488.
Dr. Dr Rosalba Hill, ID: JY:3489547, IP 005.005.005.005.
He is a 79 male was admitted to the JOHN MUIR MEDICAL CENTER-CONCORD CAMPUS for cystectomy on 01-25-1997.
Patient's VIN : 3CCCC22DDDD333888, SSN SSN-289-37-4495, Driver's license S99983662.
Phone 04.32.52.27.90, North Adrienne, Colorado Springs, E-MAIL: Rawland@google.com.
Model Information
Model Name: | clinical_deidentification_slim |
Type: | pipeline |
Compatibility: | Healthcare NLP 4.4.4+ |
License: | Licensed |
Edition: | Official |
Language: | en |
Size: | 181.9 MB |
Included Models
- DocumentAssembler
- SentenceDetectorDLModel
- TokenizerModel
- WordEmbeddingsModel
- MedicalNerModel
- NerConverter
- MedicalNerModel
- NerConverter
- ChunkMergeModel
- ContextualParserModel
- ContextualParserModel
- ContextualParserModel
- ContextualParserModel
- ContextualParserModel
- ContextualParserModel
- TextMatcherModel
- ContextualParserModel
- RegexMatcherModel
- ContextualParserModel
- ContextualParserModel
- ContextualParserModel
- ContextualParserModel
- ContextualParserModel
- ContextualParserModel
- ChunkMergeModel
- ChunkMergeModel
- DeIdentificationModel
- DeIdentificationModel
- DeIdentificationModel
- DeIdentificationModel
- Finisher