Description
This model maps extracted medical entities to Hierarchical Condition Categories (HCC) codes using sbiobert_base_cased_mli
Sentence Bert Embeddings.
Predicted Entities
HCC Codes
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models") \
.setInputCols(["document"]) \
.setOutputCol("sentence")\
tokenizer = Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
.setInputCols(["sentence", "token"])\
.setOutputCol("embeddings")
ner_model = MedicalNerModel.pretrained("ner_clinical", "en", "clinical/models") \
.setInputCols(["sentence", "token", "embeddings"]) \
.setOutputCol("ner")
ner_converter = NerConverterInternal() \
.setInputCols(["sentence", "token", "ner"]) \
.setOutputCol("ner_chunk")\
.setWhiteList(["PROBLEM"])
chunk2doc = Chunk2Doc()\
.setInputCols("ner_chunk")\
.setOutputCol("ner_chunk_doc")
sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli","en","clinical/models")\
.setInputCols(["ner_chunk_doc"])\
.setOutputCol("sbert_embeddings")\
.setCaseSensitive(False)
resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_hcc_augmented","en", "clinical/models") \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")
nlpPipeline = Pipeline(stages=[document_assembler,
sentence_detector,
tokenizer,
word_embeddings,
ner_model,
ner_converter,
chunk2doc,
sbert_embedder,
resolver])
data = spark.createDataFrame([["""The patient's medical record indicates a diagnosis of Diabetes and Chronic Obstructive Pulmonary Disease, requiring comprehensive care and management."""]]).toDF("text")
result = nlpPipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
val word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical","en","clinical/models")
.setInputCols(Array("sentence","token"))
.setOutputCol("embeddings")
val ner_model = MedicalNerModel.pretrained("ner_clinical","en","clinical/models")
.setInputCols(Array("sentence","token","embeddings"))
.setOutputCol("ner")
val ner_converter = new NerConverterInternal()
.setInputCols(Array("sentence","token","ner"))
.setOutputCol("ner_chunk")
.setWhiteList(Array("PROBLEM"))
val chunk2doc = new Chunk2Doc()
.setInputCols("ner_chunk")
.setOutputCol("ner_chunk_doc")
val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli","en","clinical/models")
.setInputCols(Array("ner_chunk_doc"))
.setOutputCol("sbert_embeddings")
.setCaseSensitive(false)
val resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_hcc_augmented","en","clinical/models")
.setInputCols(Array("sbert_embeddings"))
.setOutputCol("resolution")
setDistanceFunction("EUCLIDEAN")
val nlpPipeline = new Pipeline().setStages(Array(
document_assembler,
sentence_detector,
tokenizer,
word_embeddings,
ner_model,
ner_converter,
chunk2doc,
sbert_embedder,
resolver))
val data = Seq("""The patient"s medical record indicates a diagnosis of Diabetes and Chronic Obstructive Pulmonary Disease,requiring comprehensive care and management.""").toDF("text")
val result = nlpPipeline.fit(data).transform(data)
Results
+-------------------------------------+-----+---+---------+--------+------------------+------------------------------------------------------------+
| chunk|begin|end|ner_label|hcc_code| all_codes| resolutions|
+-------------------------------------+-----+---+---------+--------+------------------+------------------------------------------------------------+
| Diabetes| 54| 61| PROBLEM| 19| 19:::0:::18|diabetes monitored [type 2 diabetes mellitus without comp...|
|Chronic Obstructive Pulmonary Disease| 67|103| PROBLEM| 111|111:::112:::85:::0|chronic obstructive pulmonary disease [chronic obstructiv...|
+-------------------------------------+-----+---+---------+--------+------------------+------------------------------------------------------------+
Model Information
Model Name: | sbiobertresolve_hcc_augmented |
Compatibility: | Healthcare NLP 4.4.2+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence_embeddings] |
Output Labels: | [hcc] |
Language: | en |
Size: | 1.4 GB |
Case sensitive: | false |