Mapping ICD10CM Codes with Corresponding Causes and Claim Analysis Codes

Description

This pretrained model maps ICD-10-CM codes, subsequently providing corresponding causes and generating claim analysis codes for each respective ICD-10-CM code. If there is no equivalent claim analysis code, the result will be None.

Important Note: Mappers extract additional information such as extended descriptions and categories related to Concept codes (such as RxNorm, ICD10, CPT, MESH, NDC, UMLS, etc.). They generally take Concept Codes, which are the outputs of EntityResolvers, as input. When creating a pipeline that contains ‘Mapper’, it is necessary to use the ChunkMapperModel after an EntityResolverModel.

Predicted Entities

icd10cm_cause, icd10cm_claim_analysis_code

Open in Colab Download Copy S3 URI

How to use

document_assembler = DocumentAssembler()\
      .setInputCol("text")\
      .setOutputCol("document")

chunk_assembler = Doc2Chunk()\
      .setInputCols("document")\
      .setOutputCol("icd_chunk")

chunkerMapper = ChunkMapperModel.pretrained("icd10cm_cause_claim_mapper", "en", "clinical/models")\
      .setInputCols(["icd_chunk"])\
      .setOutputCol("mappings")\
      .setRels(["icd10cm_cause", "icd10cm_claim_analysis_code"])

pipeline = Pipeline().setStages([document_assembler,
                                 chunk_assembler,
                                 chunkerMapper])  

model = pipeline.fit(spark.createDataFrame([['']]).toDF('text')) 

lp = LightPipeline(model)

res = lp.fullAnnotate(["D69.51", "G43.83", "A18.03"])
val document_assembler = new DocumentAssembler()
      .setInputCol("text")
      .setOutputCol("document")

val chunk_assembler = new Doc2Chunk()
      .setInputCols("document")
      .setOutputCol("icd_chunk")

val chunkerMapper = ChunkMapperModel.pretrained("icd10cm_cause_claim_mapper", "en", "clinical/models")
      .setInputCols(Array("icd_chunk"))
      .setOutputCol("mappings")
      .setRels(Array("icd10cm_cause", "icd10cm_claim_analysis_code")) 

val mapper_pipeline = new Pipeline().setStages(Array(document_assembler, chunk_assembler, chunkerMapper))

val data = Seq(Array("D69.51", "G43.83", "A18.03")).toDS.toDF("text")

val result = pipeline.fit(data).transform(data) 

Results

+------------+------------------------------------+---------------------------+
|icd10cm_code|cause                               |icd10cm_claim_analysis_code|
+------------+------------------------------------+---------------------------+
|D69.51      |Unintentional injuries              |D69.51                     |
|D69.51      |Adverse effects of medical treatment|D69.51                     |
|G43.83      |Headache disorders                  |G43.83                     |
|G43.83      |Tension-type headache               |G43.83                     |
|G43.83      |Migraine                            |G43.83                     |
|A18.03      |Whooping cough                      |A18.03                     |  
+------------+------------------------------------+---------------------------+

Model Information

Model Name: icd10cm_cause_claim_mapper
Compatibility: Healthcare NLP 4.4.0+
License: Licensed
Edition: Official
Input Labels: [ner_chunk]
Output Labels: [mappings]
Language: en
Size: 600.2 KB