Description
The dataset consists of 12 documents taken from EUR-Lex, a multilingual corpus of court decisions and legal dispositions in the 24 official languages of the European Union.
This model extracts ADDRESS
, AMOUNT
, DATE
, ORGANISATION
, and PERSON
entities from Finnish
documents.
Predicted Entities
ADDRESS
, AMOUNT
, DATE
, ORGANISATION
, PERSON
How to use
document_assembler = nlp.DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = nlp.SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = nlp.Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
embeddings = nlp.RoBertaEmbeddings.pretrained("roberta_base_finnish_legal","fi")\
.setInputCols(["sentence", "token"])\
.setOutputCol("embeddings")\
.setMaxSentenceLength(512)\
.setCaseSensitive(True)
ner_model = legal.NerModel.pretrained("legner_mapa", "fi", "legal/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("ner")
ner_converter = nlp.NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")
nlpPipeline = nlp.Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
embeddings,
ner_model,
ner_converter])
empty_data = spark.createDataFrame([[""]]).toDF("text")
model = nlpPipeline.fit(empty_data)
text = ["""Liberato vaati 22.5.2007 päivätyllä kanteellaan Tribunale di Teramossa ( Teramon alioikeus, Italia ) asumuseroa Grigorescusta ja lapsen huoltajuutta."""]
result = model.transform(spark.createDataFrame([text]).toDF("text"))
Results
+-------------+---------+
|chunk |ner_label|
+-------------+---------+
|Liberato |PERSON |
|22.5.2007 |DATE |
|Italia |ADDRESS |
|Grigorescusta|PERSON |
+-------------+---------+
Model Information
Model Name: | legner_mapa |
Compatibility: | Legal NLP 1.0.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence, token, embeddings] |
Output Labels: | [ner] |
Language: | fi |
Size: | 1.4 MB |
References
The dataset is available here.
Benchmarking
label precision recall f1-score support
ADDRESS 0.81 0.93 0.86 27
AMOUNT 1.00 1.00 1.00 2
DATE 0.92 0.95 0.94 61
ORGANISATION 0.88 0.81 0.85 27
PERSON 0.93 0.95 0.94 40
micro-avg 0.90 0.92 0.91 157
macro-avg 0.91 0.93 0.92 157
weighted-avg 0.90 0.92 0.91 157