Legal NER for MAPA(Multilingual Anonymisation for Public Administrations)

Description

The dataset consists of 12 documents taken from EUR-Lex, a multilingual corpus of court decisions and legal dispositions in the 24 official languages of the European Union.

This model extracts ADDRESS, AMOUNT, DATE, ORGANISATION, and PERSON entities from French documents.

Predicted Entities

ADDRESS, AMOUNT, DATE, ORGANISATION, PERSON

Download Copy S3 URI

How to use

document_assembler = nlp.DocumentAssembler()\
        .setInputCol("text")\
        .setOutputCol("document")

sentence_detector = nlp.SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
        .setInputCols(["document"])\
        .setOutputCol("sentence")

tokenizer = nlp.Tokenizer()\
        .setInputCols(["sentence"])\
        .setOutputCol("token")

embeddings = nlp.BertEmbeddings.pretrained("bert_embeddings_base_fr_cased", "fr")\
        .setInputCols(["sentence", "token"])\
        .setOutputCol("embeddings")\
        .setMaxSentenceLength(512)\
        .setCaseSensitive(True)

ner_model = legal.NerModel.pretrained("legner_mapa", "fr", "legal/models")\
        .setInputCols(["sentence", "token", "embeddings"])\
        .setOutputCol("ner")

ner_converter = nlp.NerConverter()\
        .setInputCols(["sentence", "token", "ner"])\
        .setOutputCol("ner_chunk")

nlpPipeline = nlp.Pipeline(stages=[
        document_assembler,
        sentence_detector,
        tokenizer,
        embeddings,
        ner_model,
        ner_converter])

empty_data = spark.createDataFrame([[""]]).toDF("text")

model = nlpPipeline.fit(empty_data)

text = ["""Heeren, administrateur, vu la phase écrite de la procédure et à la suite de l’audience du 28 novembre 2017, rend le présent Arrêt Antécédents du litige 1 La requérante, Foshan Lihua Ceramic Co."""]

result = model.transform(spark.createDataFrame([text]).toDF("text"))

Results

+-----------------------+------------+
|chunk                  |ner_label   |
+-----------------------+------------+
|Heeren                 |PERSON      |
|28 novembre 2017       |DATE        |
|Foshan Lihua Ceramic Co|ORGANISATION|
+-----------------------+------------+

Model Information

Model Name: legner_mapa
Compatibility: Legal NLP 1.0.0+
License: Licensed
Edition: Official
Input Labels: [sentence, token, embeddings]
Output Labels: [ner]
Language: fr
Size: 1.4 MB

References

The dataset is available here.

Benchmarking

label         precision  recall  f1-score  support 
ADDRESS       1.00       1.00    1.00      11      
AMOUNT        1.00       1.00    1.00      4       
DATE          1.00       0.96    0.98      28      
ORGANISATION  1.00       0.95    0.98      22      
PERSON        0.94       0.94    0.94      31      
macro-avg     0.98       0.96    0.97      96      
macro-avg     0.99       0.97    0.98      96      
weighted-avg  0.98       0.96    0.97      96