Legal NER for MAPA(Multilingual Anonymisation for Public Administrations)

Description

The dataset consists of 12 documents taken from EUR-Lex, a multilingual corpus of court decisions and legal dispositions in the 24 official languages of the European Union.

This model extracts ADDRESS, DATE, ORGANISATION, and PERSON entities from English documents.

Predicted Entities

ADDRESS, DATE, ORGANISATION, PERSON

Download Copy S3 URI

How to use

document_assembler = nlp.DocumentAssembler()\
        .setInputCol("text")\
        .setOutputCol("document")

sentence_detector = nlp.SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
        .setInputCols(["document"])\
        .setOutputCol("sentence")

tokenizer = nlp.Tokenizer()\
        .setInputCols(["sentence"])\
        .setOutputCol("token")

embeddings = nlp.BertEmbeddings.pretrained("bert_embeddings_base_en_cased", "en")\
        .setInputCols(["sentence", "token"])\
        .setOutputCol("embeddings")\
        .setMaxSentenceLength(512)\
        .setCaseSensitive(True)

ner_model = legal.NerModel.pretrained("legner_mapa", "en", "legal/models")\
        .setInputCols(["sentence", "token", "embeddings"])\
        .setOutputCol("ner")

ner_converter = nlp.NerConverter()\
        .setInputCols(["sentence", "token", "ner"])\
        .setOutputCol("ner_chunk")

nlpPipeline = nlp.Pipeline(stages=[
        document_assembler,
        sentence_detector,
        tokenizer,
        embeddings,
        ner_model,
        ner_converter])

empty_data = spark.createDataFrame([[""]]).toDF("text")

model = nlpPipeline.fit(empty_data)

text = ["""From 1 February 2012 until 31 January 2014, thus including the period concerned, Martimpex's workers were posted to Austria to perform the same work."""]

result = model.transform(spark.createDataFrame([text]).toDF("text"))

Results

+---------------+------------+
|chunk          |ner_label   |
+---------------+------------+
|1 February 2012|DATE        |
|31 January 2014|DATE        |
|Martimpex's    |ORGANISATION|
|Austria        |ADDRESS     |
+---------------+------------+

Model Information

Model Name: legner_mapa
Compatibility: Legal NLP 1.0.0+
License: Licensed
Edition: Official
Input Labels: [sentence, token, embeddings]
Output Labels: [ner]
Language: en
Size: 1.4 MB

References

The dataset is available here.

Benchmarking

label         precision  recall  f1-score  support 
ADDRESS       1.00       1.00    1.00      5       
DATE          0.98       1.00    0.99      40      
ORGANISATION  0.83       0.71    0.77      14      
PERSON        0.98       0.85    0.91      48      
macro-avg     0.96       0.90    0.93      107     
macro-avg     0.95       0.89    0.92      107     
weighted-avg  0.96       0.90    0.93      107