Legal NER for MAPA(Multilingual Anonymisation for Public Administrations)

Description

The dataset consists of 12 documents taken from EUR-Lex, a multilingual corpus of court decisions and legal dispositions in the 24 official languages of the European Union.

This model extracts ADDRESS, AMOUNT, DATE, ORGANISATION, and PERSON entities from German documents.

Predicted Entities

ADDRESS, AMOUNT, DATE, ORGANISATION, PERSON

Download Copy S3 URI

How to use

document_assembler = nlp.DocumentAssembler()\
        .setInputCol("text")\
        .setOutputCol("document")

sentence_detector = nlp.SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
        .setInputCols(["document"])\
        .setOutputCol("sentence")

tokenizer = nlp.Tokenizer()\
        .setInputCols(["sentence"])\
        .setOutputCol("token")

embeddings = nlp.BertEmbeddings.pretrained("bert_embeddings_base_de_cased", "de")\
        .setInputCols(["sentence", "token"])\
        .setOutputCol("embeddings")\
        .setMaxSentenceLength(512)\
        .setCaseSensitive(True)

ner_model = legal.NerModel.pretrained("legner_mapa", "de", "legal/models")\
        .setInputCols(["sentence", "token", "embeddings"])\
        .setOutputCol("ner")

ner_converter = nlp.NerConverter()\
        .setInputCols(["sentence", "token", "ner"])\
        .setOutputCol("ner_chunk")

nlpPipeline = nlp.Pipeline(stages=[
        document_assembler,
        sentence_detector,
        tokenizer,
        embeddings,
        ner_model,
        ner_converter])

empty_data = spark.createDataFrame([[""]]).toDF("text")

model = nlpPipeline.fit(empty_data)

text = ["""Herr Liberato und Frau Grigorescu heirateten am 22  Oktober 2005 in Rom (Italien) und lebten in diesem Mitgliedstaat bis zur Geburt ihres Kindes am 20 Februar 2006 zusammen."""]

result = model.transform(spark.createDataFrame([text]).toDF("text"))

Results

+----------------+---------+
|chunk           |ner_label|
+----------------+---------+
|Herr Liberato   |PERSON   |
|Frau Grigorescu |PERSON   |
|22  Oktober 2005|DATE     |
|Rom (Italien)   |ADDRESS  |
|20 Februar 2006 |DATE     |
+----------------+---------+

Model Information

Model Name: legner_mapa
Compatibility: Legal NLP 1.0.0+
License: Licensed
Edition: Official
Input Labels: [sentence, token, embeddings]
Output Labels: [ner]
Language: de
Size: 1.4 MB

References

The dataset is available here.

Benchmarking

label         precision  recall  f1-score  support 
ADDRESS       0.69       0.85    0.76      13      
AMOUNT        1.00       0.75    0.86      4       
DATE          0.92       0.93    0.93      61      
ORGANISATION  0.64       0.77    0.70      30      
PERSON        0.85       0.87    0.86      46      
macro-avg     0.82       0.87    0.84      154     
macro-avg     0.82       0.83    0.82      154     
weighted-avg  0.83       0.87    0.85      154