Description
The dataset consists of 12 documents taken from EUR-Lex, a multilingual corpus of court decisions and legal dispositions in the 24 official languages of the European Union.
This model extracts ADDRESS
, AMOUNT
, DATE
, ORGANISATION
, and PERSON
entities from Danish
documents.
Predicted Entities
ADDRESS
, AMOUNT
, DATE
, ORGANISATION
, PERSON
How to use
document_assembler = nlp.DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = nlp.SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = nlp.Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
embeddings = nlp.BertEmbeddings.pretrained("bert_embeddings_base_da_cased", "da")\
.setInputCols(["sentence", "token"])\
.setOutputCol("embeddings")\
.setMaxSentenceLength(512)\
.setCaseSensitive(True)
ner_model = legal.NerModel.pretrained("legner_mapa", "da", "legal/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("ner")
ner_converter = nlp.NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")
nlpPipeline = nlp.Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
embeddings,
ner_model,
ner_converter])
empty_data = spark.createDataFrame([[""]]).toDF("text")
model = nlpPipeline.fit(empty_data)
text = ["""Fra den 1. februar 2012 til den 31. januar 2014, og således også under den omtvistede periode, blev arbejdstagere hos Martimpex udsendt til Østrig for at udføre det samme arbejde."""]
result = model.transform(spark.createDataFrame([text]).toDF("text"))
Results
+---------------+------------+
|chunk |ner_label |
+---------------+------------+
|1. februar 2012|DATE |
|31. januar 2014|DATE |
|Martimpex |ORGANISATION|
|Østrig |ADDRESS |
+---------------+------------+
Model Information
Model Name: | legner_mapa |
Compatibility: | Legal NLP 1.0.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence, token, embeddings] |
Output Labels: | [ner] |
Language: | da |
Size: | 1.4 MB |
References
The dataset is available here.
Benchmarking
label precision recall f1-score support
ADDRESS 0.95 0.90 0.93 21
AMOUNT 1.00 1.00 1.00 4
DATE 0.98 0.98 0.98 54
ORGANISATION 0.74 0.74 0.74 31
PERSON 0.79 0.86 0.82 43
macro-avg 0.87 0.89 0.88 153
macro-avg 0.89 0.90 0.89 153
weighted-avg 0.87 0.89 0.88 153