Description
This is a NER model, aimed to be run only after detecting the REMEDIES
clause with a proper classifier (use legmulticlf_mnda_sections_paragraph_other
for that purpose). It will extract the following entities: CURRENCY
, NUMERIC_REMEDY
, and REMEDY_TYPE
.
Predicted Entities
CURRENCY
, NUMERIC_REMEDY
, REMEDY_TYPE
How to use
document_assembler = nlp.DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = nlp.SentenceDetector()\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = nlp.Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
embeddings = nlp.RoBertaEmbeddings.pretrained("roberta_embeddings_legal_roberta_base","en") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("embeddings")\
.setMaxSentenceLength(512)\
.setCaseSensitive(True)
ner_model = legal.NerModel.pretrained("legner_nda_remedies", "en", "legal/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("ner")
ner_converter = nlp.NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")
nlpPipeline = nlp.Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
embeddings,
ner_model,
ner_converter])
empty_data = spark.createDataFrame([[""]]).toDF("text")
model = nlpPipeline.fit(empty_data)
text = ["""The breaching party shall pay the non-breaching party liquidated damages of $ 1,000 per day for each day that the breach of this NDA continues."""]
result = model.transform(spark.createDataFrame([text]).toDF("text"))
Results
+------------------+--------------+
|chunk |ner_label |
+------------------+--------------+
|liquidated damages|REMEDY_TYPE |
|$ |CURRENCY |
|1,000 |NUMERIC_REMEDY|
+------------------+--------------+
Model Information
Model Name: | legner_nda_remedies |
Compatibility: | Legal NLP 1.0.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence, token, embeddings] |
Output Labels: | [ner] |
Language: | en |
Size: | 16.3 MB |
References
In-house annotations on the Non-disclosure Agreements
Benchmarking
label precision recall f1-score support
CURRENCY 1.00 1.00 1.00 11
NUMERIC_REMEDY 1.00 1.00 1.00 11
REMEDY_TYPE 0.86 0.94 0.90 32
micro-avg 0.91 0.96 0.94 54
macro-avg 0.95 0.98 0.97 54
weighted-avg 0.92 0.96 0.94 54