Description
This pretrained model maps HCPCS codes with their corresponding National Drug Codes (NDC) and their drug brand names.
Important Note
: Mappers extract additional information such as extended descriptions and categories related to Concept codes (such as RxNorm, ICD10, CPT, MESH, NDC, UMLS, etc.). They generally take Concept Codes, which are the outputs of EntityResolvers, as input. When creating a pipeline that contains ‘Mapper’, it is necessary to use the ChunkMapperModel after an EntityResolverModel.
Predicted Entities
ndc_code
, brand_name
Open in Colab Download Copy S3 URI
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("hcpcs_chunk")
chunkerMapper = DocMapperModel.pretrained("hcpcs_ndc_mapper", "en", "clinical/models")\
.setInputCols(["hcpcs_chunk"])\
.setOutputCol("mappings")\
.setRels(["ndc_code", "brand_name"])
pipeline = Pipeline().setStages([document_assembler,
chunkerMapper])
model = pipeline.fit(spark.createDataFrame([['']]).toDF('text'))
lp = LightPipeline(model)
res = lp.fullAnnotate(["Q5106", "J9211", "J7508"])
val document_assembler = new DocumentAssembler()
.setInputCol("text")\
.setOutputCol("hcpcs_chunk")
val chunkerMapper = DocMapperModel
.pretrained("hcpcs_ndc_mapper", "en", "clinical/models")
.setInputCols(Array("hcpcs_chunk"))
.setOutputCol("mappings")
.setRels(Array("ndc_code", "brand_name"))
val mapper_pipeline = new Pipeline().setStages(Array(
document_assembler,
chunkerMapper))
val data = Seq(Array(["Q5106", "J9211", "J7508"])).toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Results
+-----------+-------------------------------------+----------+
|hcpcs_chunk|mappings |relation |
+-----------+-------------------------------------+----------+
|Q5106 |59353-0003-10 |ndc_code |
|Q5106 |RETACRIT (PF) 3000 U/1 ML |brand_name|
|J9211 |59762-2596-01 |ndc_code |
|J9211 |IDARUBICIN HYDROCHLORIDE (PF) 1 MG/ML|brand_name|
|J7508 |00469-0687-73 |ndc_code |
|J7508 |ASTAGRAF XL 5 MG |brand_name|
+-----------+-------------------------------------+----------+
Model Information
Model Name: | hcpcs_ndc_mapper |
Compatibility: | Healthcare NLP 4.4.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [ner_chunk] |
Output Labels: | [mappings] |
Language: | en |
Size: | 20.7 KB |