Description
This is a NER model, aimed to be run only after detecting the USE_OF_CONF_INFO
clause with a proper classifier (use legmulticlf_mnda_sections_paragraph_other for that purpose). It will extract the following entities: RESTRICTED_ACTION
, RESTRICTED_SUBJECT
, RESTRICTED_OBJECT
, and RESTRICTED_IND_OBJECT
.
Predicted Entities
RESTRICTED_ACTION
, RESTRICTED_SUBJECT
, RESTRICTED_OBJECT
, RESTRICTED_IND_OBJECT
How to use
document_assembler = nlp.DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = nlp.SentenceDetector()\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = nlp.Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
embeddings = nlp.RoBertaEmbeddings.pretrained("roberta_embeddings_legal_roberta_base","en") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("embeddings")\
.setMaxSentenceLength(512)\
.setCaseSensitive(True)
ner_model = legal.NerModel.pretrained("legner_nda_confidential_information_restricted", "en", "legal/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("ner")
ner_converter = nlp.NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")
nlpPipeline = nlp.Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
embeddings,
ner_model,
ner_converter])
empty_data = spark.createDataFrame([[""]]).toDF("text")
model = nlpPipeline.fit(empty_data)
text = ["""The recipient may use the proprietary information solely for the purpose of performing its obligations under a separate agreement with the disclosing party, and may not disclose such information to any third party without the prior written consent of the disclosing party."""]
result = model.transform(spark.createDataFrame([text]).toDF("text"))
Results
+-----------+---------------------+
|chunk |ner_label |
+-----------+---------------------+
|recipient |RESTRICTED_SUBJECT |
|disclose |RESTRICTED_ACTION |
|information|RESTRICTED_OBJECT |
|third party|RESTRICTED_IND_OBJECT|
+-----------+---------------------+
Model Information
Model Name: | legner_nda_confidential_information_restricted |
Compatibility: | Legal NLP 1.0.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence, token, embeddings] |
Output Labels: | [ner] |
Language: | en |
Size: | 16.3 MB |
References
In-house annotations on the Non-disclosure Agreements
Benchmarking
label precision recall f1-score support
RESTRICTED_ACTION 0.92 0.94 0.93 36
RESTRICTED_IND_OBJECT 1.00 0.93 0.97 15
RESTRICTED_OBJECT 0.74 1.00 0.85 26
RESTRICTED_SUBJECT 0.72 0.90 0.80 29
micro-avg 0.82 0.94 0.88 106
macro-avg 0.85 0.94 0.89 106
weighted-avg 0.83 0.94 0.88 106