Description
This is a NER model, aimed to be run only after detecting the NON_COMP
clause with a proper classifier (use legmulticlf_mnda_sections_paragraph_other
model for that purpose). It will extract the following entities: NON_COMPETE_COUNTRY
, and NON_COMPETE_TERM
.
Predicted Entities
NON_COMPETE_COUNTRY
, NON_COMPETE_TERM
How to use
document_assembler = nlp.DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = nlp.SentenceDetector()\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = nlp.Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
embeddings = nlp.RoBertaEmbeddings.pretrained("roberta_embeddings_legal_roberta_base","en") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("embeddings")\
.setMaxSentenceLength(512)\
.setCaseSensitive(True)
ner_model = legal.NerModel.pretrained("legner_nda_non_compete", "en", "legal/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("ner")
ner_converter = nlp.NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")
nlpPipeline = nlp.Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
embeddings,
ner_model,
ner_converter
])
empty_data = spark.createDataFrame([[""]]).toDF("text")
model = nlpPipeline.fit(empty_data)
text = ["""The employee shall not engage in any business activities that compete with the company in France for a period of two years after leaving the company."""]
result = model.transform(spark.createDataFrame([text]).toDF("text"))
Results
+---------+-------------------+
|chunk |ner_label |
+---------+-------------------+
|France |NON_COMPETE_COUNTRY|
|two years|NON_COMPETE_TERM |
+---------+-------------------+
Model Information
Model Name: | legner_nda_non_compete |
Compatibility: | Legal NLP 1.0.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence, token, embeddings] |
Output Labels: | [ner] |
Language: | en |
Size: | 16.2 MB |
References
In-house annotations on the Non-disclosure Agreements
Benchmarking
label precision recall f1-score support
NON_COMPETE_COUNTRY 1.00 1.00 1.00 8
NON_COMPETE_TERM 1.00 1.00 1.00 15
micro-avg 1.00 1.00 1.00 23
macro-avg 1.00 1.00 1.00 23
weighted-avg 1.00 1.00 1.00 23