Description
This is a NER model, aimed to be run only after detecting the PREAMBLE
clause with a proper classifier (use legmulticlf_mnda_sections_paragraph_other for that purpose). It will extract the following entities: PURPOSE
, and PURPOSE_OBJECT
.
Predicted Entities
PURPOSE
, PURPOSE_OBJECT
How to use
document_assembler = nlp.DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = nlp.SentenceDetector()\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = nlp.Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
embeddings = nlp.RoBertaEmbeddings.pretrained("roberta_embeddings_legal_roberta_base","en") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("embeddings")\
.setMaxSentenceLength(512)\
.setCaseSensitive(True)
ner_model = legal.NerModel.pretrained("legner_nda_preamble", "en", "legal/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("ner")
ner_converter = nlp.NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")
nlpPipeline = nlp.Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
embeddings,
ner_model,
ner_converter])
empty_data = spark.createDataFrame([[""]]).toDF("text")
model = nlpPipeline.fit(empty_data)
text = ["""In order to facilitate the consideration and negotiation of a possible transaction involving Chordiant and Pegasystems ( referred to collectively as the "Parties" and individually as a "Party"), each Party has requested access to certain non-public information regarding the other Party and the other Party’s subsidiaries."""]
result = model.transform(spark.createDataFrame([text]).toDF("text"))
Results
+-------------+--------------+
|chunk |ner_label |
+-------------+--------------+
|consideration|PURPOSE |
|negotiation |PURPOSE |
|transaction |PURPOSE_OBJECT|
+-------------+--------------+
Model Information
Model Name: | legner_nda_preamble |
Compatibility: | Legal NLP 1.0.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence, token, embeddings] |
Output Labels: | [ner] |
Language: | en |
Size: | 16.3 MB |
References
In-house annotations on the Non-disclosure Agreements
Benchmarking
label precision recall f1-score support
B-PURPOSE 1.00 0.93 0.97 15
B-PURPOSE_OBJECT 0.90 0.82 0.86 11
I-PURPOSE_OBJECT 1.00 0.80 0.89 5
micro-avg 0.96 0.87 0.92 31
macro-avg 0.97 0.85 0.90 31
weighted-avg 0.96 0.87 0.91 31