Pipeline to Resolve CVX Codes

Description

This pretrained pipeline maps entities with their corresponding CVX codes. You’ll just feed your text and it will return the corresponding CVX codes.

Open in Colab Download Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

resolver_pipeline = PretrainedPipeline("cvx_resolver_pipeline", "en", "clinical/models")

text= "The patient has a history of influenza vaccine, tetanus and DTaP"

result = resolver_pipeline.fullAnnotate(text)
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val resolver_pipeline = new PretrainedPipeline("cvx_resolver_pipeline", "en", "clinical/models")

val result = resolver_pipeline.fullAnnotate("The patient has a history of influenza vaccine, tetanus and DTaP")
import nlu
nlu.load("en.resolve.cvx_pipeline").predict("""The patient has a history of influenza vaccine, tetanus and DTaP""")

Results

+-----------------+---------+--------+
|chunk            |ner_chunk|cvx_code|
+-----------------+---------+--------+
|influenza vaccine|Vaccine  |160     |
|tetanus          |Vaccine  |35      |
|DTaP             |Vaccine  |20      |
+-----------------+---------+--------+

Model Information

Model Name: cvx_resolver_pipeline
Type: pipeline
Compatibility: Healthcare NLP 4.3.2+
License: Licensed
Edition: Official
Language: en
Size: 2.1 GB

Included Models

  • DocumentAssembler
  • SentenceDetector
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverterInternalModel
  • ChunkMapperModel
  • ChunkMapperFilterer
  • Chunk2Doc
  • BertSentenceEmbeddings
  • SentenceEntityResolverModel
  • ResolverMerger