Description
This pipeline includes Named-Entity Recognition, Assertion Status and Relation Extraction models to extract information from oncology texts. This pipeline extracts diagnoses, treatments, tests, anatomical references and demographic entities.
Predicted Entities
Adenopathy
, Age
, Biomarker
, Biomarker_Result
, Cancer_Dx
, Cancer_Score
, Cancer_Surgery
, Chemotherapy
, Cycle_Count
, Cycle_Day
, Cycle_Number
, Date
, Death_Entity
, Direction
, Dosage
, Duration
, Frequency
, Gender
, Grade
, Histological_Type
, Hormonal_Therapy
, Imaging_Test
, Immunotherapy
, Invasion
, Line_Of_Therapy
, Lymph_Node
, Lymph_Node_Modifier
, Metastasis
, Oncogene
, Pathology_Result
, Pathology_Test
, Performance_Status
, Race_Ethnicity
, Radiation_Dose
, Radiotherapy
, Relative_Date
, Response_To_Treatment
, Route
, Site_Bone
, Site_Brain
, Site_Breast
, Site_Liver
, Site_Lung
, Site_Lymph_Node
, Site_Other_Body_Part
, Smoking_Status
, Staging
, Targeted_Therapy
, Tumor
, Tumor_Description
, Tumor_Finding
, Tumor_Size
, Unspecific_Therapy
Live Demo Open in Colab Download Copy S3 URI
How to use
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("oncology_general_pipeline", "en", "clinical/models")
text = '''The patient underwent a left mastectomy for a left breast cancer two months ago.
The tumor is positive for ER and PR.'''
result = pipeline.fullAnnotate(text)
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
val pipeline = new PretrainedPipeline("oncology_general_pipeline", "en", "clinical/models")
val text = "The patient underwent a left mastectomy for a left breast cancer two months ago.
The tumor is positive for ER and PR."
val result = pipeline.fullAnnotate(text)
import nlu
nlu.load("en.oncology_general.pipeline").predict("""The patient underwent a left mastectomy for a left breast cancer two months ago.
The tumor is positive for ER and PR.""")
Results
******************** ner_oncology_wip results ********************
| chunk | ner_label |
|:---------------|:-----------------|
| left | Direction |
| mastectomy | Cancer_Surgery |
| left | Direction |
| breast cancer | Cancer_Dx |
| two months ago | Relative_Date |
| tumor | Tumor_Finding |
| positive | Biomarker_Result |
| ER | Biomarker |
| PR | Biomarker |
******************** ner_oncology_diagnosis_wip results ********************
| chunk | ner_label |
|:--------------|:--------------|
| breast cancer | Cancer_Dx |
| tumor | Tumor_Finding |
******************** ner_oncology_tnm_wip results ********************
| chunk | ner_label |
|:--------------|:------------|
| breast cancer | Cancer_Dx |
| tumor | Tumor |
******************** ner_oncology_therapy_wip results ********************
| chunk | ner_label |
|:-----------|:---------------|
| mastectomy | Cancer_Surgery |
******************** ner_oncology_test_wip results ********************
| chunk | ner_label |
|:---------|:-----------------|
| positive | Biomarker_Result |
| ER | Biomarker |
| PR | Biomarker |
******************** assertion_oncology_wip results ********************
| chunk | ner_label | assertion |
|:--------------|:---------------|:------------|
| mastectomy | Cancer_Surgery | Past |
| breast cancer | Cancer_Dx | Present |
| tumor | Tumor_Finding | Present |
| ER | Biomarker | Present |
| PR | Biomarker | Present |
******************** re_oncology_wip results ********************
| chunk1 | entity1 | chunk2 | entity2 | relation |
|:--------------|:-----------------|:---------------|:--------------|:--------------|
| mastectomy | Cancer_Surgery | two months ago | Relative_Date | is_related_to |
| breast cancer | Cancer_Dx | two months ago | Relative_Date | is_related_to |
| tumor | Tumor_Finding | ER | Biomarker | O |
| tumor | Tumor_Finding | PR | Biomarker | O |
| positive | Biomarker_Result | ER | Biomarker | is_related_to |
| positive | Biomarker_Result | PR | Biomarker | is_related_to |
******************** re_oncology_granular_wip results ********************
| chunk1 | entity1 | chunk2 | entity2 | relation |
|:--------------|:-----------------|:---------------|:--------------|:--------------|
| mastectomy | Cancer_Surgery | two months ago | Relative_Date | is_date_of |
| breast cancer | Cancer_Dx | two months ago | Relative_Date | is_date_of |
| tumor | Tumor_Finding | ER | Biomarker | O |
| tumor | Tumor_Finding | PR | Biomarker | O |
| positive | Biomarker_Result | ER | Biomarker | is_finding_of |
| positive | Biomarker_Result | PR | Biomarker | is_finding_of |
Model Information
Model Name: | oncology_general_pipeline |
Type: | pipeline |
Compatibility: | Healthcare NLP 4.3.2+ |
License: | Licensed |
Edition: | Official |
Language: | en |
Size: | 1.7 GB |
Included Models
- DocumentAssembler
- SentenceDetectorDLModel
- TokenizerModel
- WordEmbeddingsModel
- MedicalNerModel
- NerConverter
- MedicalNerModel
- NerConverter
- MedicalNerModel
- NerConverter
- MedicalNerModel
- NerConverter
- MedicalNerModel
- NerConverter
- ChunkMergeModel
- ChunkMergeModel
- AssertionDLModel
- PerceptronModel
- DependencyParserModel
- RelationExtractionModel
- RelationExtractionModel