Description
This pretrained pipeline is built on the top of ner_chemprot_biobert model.
Predicted Entities
GENE-N
, CHEMICAL
, GENE-Y
How to use
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("ner_chemprot_biobert_pipeline", "en", "clinical/models")
text = '''Keratinocyte growth factor and acidic fibroblast growth factor are mitogens for primary cultures of mammary epithelium.'''
result = pipeline.fullAnnotate(text)
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
val pipeline = new PretrainedPipeline("ner_chemprot_biobert_pipeline", "en", "clinical/models")
val text = "Keratinocyte growth factor and acidic fibroblast growth factor are mitogens for primary cultures of mammary epithelium."
val result = pipeline.fullAnnotate(text)
import nlu
nlu.load("en.med_ner.chemprot_biobert.pipeline").predict("""Keratinocyte growth factor and acidic fibroblast growth factor are mitogens for primary cultures of mammary epithelium.""")
Results
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:-------------|--------:|------:|:------------|-------------:|
| 0 | Keratinocyte | 0 | 11 | GENE-Y | 0.894 |
| 1 | growth | 13 | 18 | GENE-Y | 0.4833 |
| 2 | factor | 20 | 25 | GENE-Y | 0.7991 |
| 3 | acidic | 31 | 36 | GENE-Y | 0.9765 |
| 4 | fibroblast | 38 | 47 | GENE-Y | 0.3905 |
| 5 | growth | 49 | 54 | GENE-Y | 0.7109 |
| 6 | factor | 56 | 61 | GENE-Y | 0.8693 |
Model Information
Model Name: | ner_chemprot_biobert_pipeline |
Type: | pipeline |
Compatibility: | Healthcare NLP 4.3.0+ |
License: | Licensed |
Edition: | Official |
Language: | en |
Size: | 422.2 MB |
Included Models
- DocumentAssembler
- SentenceDetectorDLModel
- TokenizerModel
- BertEmbeddings
- MedicalNerModel
- NerConverterInternalModel