Pipeline to Detect Adverse Drug Events (BertForTokenClassification)

Description

This pretrained pipeline is built on the top of bert_token_classifier_ner_ade model.

Predicted Entities

ADE, DRUG

Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("bert_token_classifier_ner_ade_pipeline", "en", "clinical/models")

text = '''Both the erbA IRES and the erbA/myb virus constructs transformed erythroid cells after infection of bone marrow or blastoderm cultures. The erbA/myb IRES virus exhibited a 5-10-fold higher transformed colony forming efficiency than the erbA IRES virus in the blastoderm assay.'''

result = pipeline.fullAnnotate(text)
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("bert_token_classifier_ner_ade_pipeline", "en", "clinical/models")

val text = "Both the erbA IRES and the erbA/myb virus constructs transformed erythroid cells after infection of bone marrow or blastoderm cultures. The erbA/myb IRES virus exhibited a 5-10-fold higher transformed colony forming efficiency than the erbA IRES virus in the blastoderm assay."

val result = pipeline.fullAnnotate(text)
import nlu
nlu.load("en.classify.token_bert.ade_pipeline").predict("""Both the erbA IRES and the erbA/myb virus constructs transformed erythroid cells after infection of bone marrow or blastoderm cultures. The erbA/myb IRES virus exhibited a 5-10-fold higher transformed colony forming efficiency than the erbA IRES virus in the blastoderm assay.""")

Results

| ner_chunk   | begin   | end   | ner_label   | confidence   |
|-------------|---------|-------|-------------|--------------|

Model Information

Model Name: bert_token_classifier_ner_ade_pipeline
Type: pipeline
Compatibility: Healthcare NLP 4.3.0+
License: Licensed
Edition: Official
Language: en
Size: 404.9 MB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • MedicalBertForTokenClassifier
  • NerConverterInternalModel