Description
This pretrained pipeline is built on the top of bert_token_classifier_ner_ade model.
Predicted Entities
ADE
, DRUG
How to use
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("bert_token_classifier_ner_ade_pipeline", "en", "clinical/models")
text = '''Both the erbA IRES and the erbA/myb virus constructs transformed erythroid cells after infection of bone marrow or blastoderm cultures. The erbA/myb IRES virus exhibited a 5-10-fold higher transformed colony forming efficiency than the erbA IRES virus in the blastoderm assay.'''
result = pipeline.fullAnnotate(text)
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
val pipeline = new PretrainedPipeline("bert_token_classifier_ner_ade_pipeline", "en", "clinical/models")
val text = "Both the erbA IRES and the erbA/myb virus constructs transformed erythroid cells after infection of bone marrow or blastoderm cultures. The erbA/myb IRES virus exhibited a 5-10-fold higher transformed colony forming efficiency than the erbA IRES virus in the blastoderm assay."
val result = pipeline.fullAnnotate(text)
import nlu
nlu.load("en.classify.token_bert.ade_pipeline").predict("""Both the erbA IRES and the erbA/myb virus constructs transformed erythroid cells after infection of bone marrow or blastoderm cultures. The erbA/myb IRES virus exhibited a 5-10-fold higher transformed colony forming efficiency than the erbA IRES virus in the blastoderm assay.""")
Results
| ner_chunk | begin | end | ner_label | confidence |
|-------------|---------|-------|-------------|--------------|
Model Information
Model Name: | bert_token_classifier_ner_ade_pipeline |
Type: | pipeline |
Compatibility: | Healthcare NLP 4.3.0+ |
License: | Licensed |
Edition: | Official |
Language: | en |
Size: | 404.9 MB |
Included Models
- DocumentAssembler
- SentenceDetectorDLModel
- TokenizerModel
- MedicalBertForTokenClassifier
- NerConverterInternalModel