Pipeline to Detect PHI for Deidentification purposes (Italian, reduced entities)

Description

This pretrained pipeline is built on the top of ner_deid_generic model.

Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("ner_deid_generic_pipeline", "it", "clinical/models")

text = '''Ho visto Gastone Montanariello (49 anni) riferito all' Ospedale San Camillo per diabete mal controllato con sintomi risalenti a marzo 2015.'''

result = pipeline.fullAnnotate(text)
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("ner_deid_generic_pipeline", "it", "clinical/models")

val text = "Ho visto Gastone Montanariello (49 anni) riferito all' Ospedale San Camillo per diabete mal controllato con sintomi risalenti a marzo 2015."

val result = pipeline.fullAnnotate(text)

Results

|    | ner_chunks            |   begin |   end | ner_label   | confidence   |
|---:|:----------------------|--------:|------:|:------------|:-------------|
|  0 | Gastone Montanariello |       9 |    29 | NAME        |              |
|  1 | 49                    |      32 |    33 | AGE         |              |
|  2 | Ospedale San Camillo  |      55 |    74 | LOCATION    |              |
|  3 | marzo 2015            |     128 |   137 | DATE        |              |

Model Information

Model Name: ner_deid_generic_pipeline
Type: pipeline
Compatibility: Healthcare NLP 4.3.0+
License: Licensed
Edition: Official
Language: it
Size: 1.3 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverterInternalModel