Pipeline to Detect Clinical Conditions (ner_eu_clinical_condition - es)

Description

This pretrained pipeline is built on the top of ner_eu_clinical_condition model.

Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("ner_eu_clinical_condition_pipeline", "es", "clinical/models")

text = "
La exploración abdominal revela una cicatriz de laparotomía media infraumbilical, la presencia de ruidos disminuidos, y dolor a la palpación de manera difusa sin claros signos de irritación peritoneal. No existen hernias inguinales o crurales.
"

result = pipeline.fullAnnotate(text)
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("ner_eu_clinical_condition_pipeline", "es", "clinical/models")

val text = "
La exploración abdominal revela una cicatriz de laparotomía media infraumbilical, la presencia de ruidos disminuidos, y dolor a la palpación de manera difusa sin claros signos de irritación peritoneal. No existen hernias inguinales o crurales.
"

val result = pipeline.fullAnnotate(text)

Results

|    | chunks               |   begin |   end | entities           |   confidence |
|---:|:---------------------|--------:|------:|:-------------------|-------------:|
|  0 | cicatriz             |      37 |    44 | clinical_condition |      0.9883  |
|  1 | dolor a la palpación |     121 |   140 | clinical_condition |      0.87025 |
|  2 | signos               |     170 |   175 | clinical_condition |      0.9862  |
|  3 | irritación           |     180 |   189 | clinical_condition |      0.9975  |
|  4 | hernias inguinales   |     214 |   231 | clinical_condition |      0.7543  |

Model Information

Model Name: ner_eu_clinical_condition_pipeline
Type: pipeline
Compatibility: Healthcare NLP 4.3.0+
License: Licensed
Edition: Official
Language: es
Size: 1.3 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverterInternalModel