Pipeline to Detect Clinical Conditions (ner_eu_clinical_case - eu)

Description

This pretrained pipeline is built on the top of ner_eu_clinical_condition model.

Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("ner_eu_clinical_condition_pipeline", "eu", "clinical/models")

text = "
Gertaera honetatik bi hilabetetara, umea Larrialdietako Zerbitzura dator 4 egunetan zehar buruko mina eta bekokiko hantura azaltzeagatik, sukarrik izan gabe. Miaketan, haztapen mingarria duen bekokiko  hantura bigunaz gain, ez da beste zeinurik azaltzen. Polakiuria eta tenesmo arina ere izan zuen egun horretan hematuriarekin batera. Geroztik sintomarik gabe dago.
"

result = pipeline.fullAnnotate(text)
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("ner_eu_clinical_condition_pipeline", "eu", "clinical/models")

val text = "
Gertaera honetatik bi hilabetetara, umea Larrialdietako Zerbitzura dator 4 egunetan zehar buruko mina eta bekokiko hantura azaltzeagatik, sukarrik izan gabe. Miaketan, haztapen mingarria duen bekokiko  hantura bigunaz gain, ez da beste zeinurik azaltzen. Polakiuria eta tenesmo arina ere izan zuen egun horretan hematuriarekin batera. Geroztik sintomarik gabe dago.
"

val result = pipeline.fullAnnotate(text)

Results

|    | chunks     |   begin |   end | entities           |   confidence |
|---:|:-----------|--------:|------:|:-------------------|-------------:|
|  0 | mina       |      98 |   101 | clinical_condition |       0.8754 |
|  1 | hantura    |     116 |   122 | clinical_condition |       0.8877 |
|  2 | sukarrik   |     139 |   146 | clinical_condition |       0.9119 |
|  3 | mingarria  |     178 |   186 | clinical_condition |       0.7381 |
|  4 | hantura    |     203 |   209 | clinical_condition |       0.8805 |
|  5 | Polakiuria |     256 |   265 | clinical_condition |       0.6683 |
|  6 | sintomarik |     345 |   354 | clinical_condition |       0.9632 |

Model Information

Model Name: ner_eu_clinical_condition_pipeline
Type: pipeline
Compatibility: Healthcare NLP 4.3.0+
License: Licensed
Edition: Official
Language: eu
Size: 1.1 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverterInternalModel