Legal Employment Document Classifier (EURLEX)

Description

European Union (EU) legislation is published in the EUR-Lex portal. All EU laws are annotated by the EU’s Publications Office with multiple concepts from the EuroVoc thesaurus, a multilingual thesaurus maintained by the Publications Office.

Given a document, the legclf_employment_bert model, it is a Bert Sentence Embeddings Document Classifier, classifies if the document belongs to the class Employment or not (Binary Classification) according to EuroVoc labels.

Predicted Entities

Employment, Other

Copy S3 URI

How to use


document_assembler = nlp.DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

embeddings = nlp.BertSentenceEmbeddings.pretrained("sent_bert_base_cased", "en")\
    .setInputCols("document")\
    .setOutputCol("sentence_embeddings")

doc_classifier = legal.ClassifierDLModel.pretrained("legclf_employment_bert", "en", "legal/models")\
    .setInputCols(["sentence_embeddings"])\
    .setOutputCol("category")

nlpPipeline = nlp.Pipeline(stages=[
    document_assembler, 
    embeddings,
    doc_classifier])

df = spark.createDataFrame([["YOUR TEXT HERE"]]).toDF("text")

model = nlpPipeline.fit(df)

result = model.transform(df)

Results


+-------+
|result|
+-------+
|[Employment]|
|[Other]|
|[Other]|
|[Employment]|

Model Information

Model Name: legclf_employment_bert
Compatibility: Legal NLP 1.0.0+
License: Licensed
Edition: Official
Input Labels: [sentence_embeddings]
Output Labels: [class]
Language: en
Size: 21.6 MB

References

Train dataset available here

Benchmarking


       label precision recall  f1-score  support
  Employment      0.90   0.89      0.89       70
       Other      0.87   0.89      0.88       61
    accuracy         -      -      0.89      131
   macro-avg      0.88   0.89      0.89      131
weighted-avg      0.89   0.89      0.89      131