Legal Communications Document Classifier (EURLEX)

Description

European Union (EU) legislation is published in the EUR-Lex portal. All EU laws are annotated by the EU’s Publications Office with multiple concepts from the EuroVoc thesaurus, a multilingual thesaurus maintained by the Publications Office.

Given a document, the legclf_communications_bert model, it is a Bert Sentence Embeddings Document Classifier, classifies if the document belongs to the class Communications or not (Binary Classification) according to EuroVoc labels.

Predicted Entities

Communications, Other

Copy S3 URI

How to use


document_assembler = nlp.DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

embeddings = nlp.BertSentenceEmbeddings.pretrained("sent_bert_base_cased", "en")\
    .setInputCols("document")\
    .setOutputCol("sentence_embeddings")

doc_classifier = legal.ClassifierDLModel.pretrained("legclf_communications_bert", "en", "legal/models")\
    .setInputCols(["sentence_embeddings"])\
    .setOutputCol("category")

nlpPipeline = nlp.Pipeline(stages=[
    document_assembler, 
    embeddings,
    doc_classifier])

df = spark.createDataFrame([["YOUR TEXT HERE"]]).toDF("text")

model = nlpPipeline.fit(df)

result = model.transform(df)

Results


+-------+
|result|
+-------+
|[Communications]|
|[Other]|
|[Other]|
|[Communications]|

Model Information

Model Name: legclf_communications_bert
Compatibility: Legal NLP 1.0.0+
License: Licensed
Edition: Official
Input Labels: [sentence_embeddings]
Output Labels: [class]
Language: en
Size: 21.5 MB

References

Train dataset available here

Benchmarking


         label precision recall  f1-score  support
Communications      0.84   0.88      0.86      121
         Other      0.87   0.83      0.85      120
      accuracy         -      -      0.85      241
     macro-avg      0.86   0.85      0.85      241
  weighted-avg      0.86   0.85      0.85      241