Legal Chemistry Document Classifier (EURLEX)

Description

European Union (EU) legislation is published in the EUR-Lex portal. All EU laws are annotated by the EU’s Publications Office with multiple concepts from the EuroVoc thesaurus, a multilingual thesaurus maintained by the Publications Office.

Given a document, the legclf_chemistry_bert model, it is a Bert Sentence Embeddings Document Classifier, classifies if the document belongs to the class Chemistry or not (Binary Classification) according to EuroVoc labels.

Predicted Entities

Chemistry, Other

Copy S3 URI

How to use


document_assembler = nlp.DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

embeddings = nlp.BertSentenceEmbeddings.pretrained("sent_bert_base_cased", "en")\
    .setInputCols("document")\
    .setOutputCol("sentence_embeddings")

doc_classifier = legal.ClassifierDLModel.pretrained("legclf_chemistry_bert", "en", "legal/models")\
    .setInputCols(["sentence_embeddings"])\
    .setOutputCol("category")

nlpPipeline = nlp.Pipeline(stages=[
    document_assembler, 
    embeddings,
    doc_classifier])

df = spark.createDataFrame([["YOUR TEXT HERE"]]).toDF("text")

model = nlpPipeline.fit(df)

result = model.transform(df)

Results


+-------+
|result|
+-------+
|[Chemistry]|
|[Other]|
|[Other]|
|[Chemistry]|

Model Information

Model Name: legclf_chemistry_bert
Compatibility: Legal NLP 1.0.0+
License: Licensed
Edition: Official
Input Labels: [sentence_embeddings]
Output Labels: [class]
Language: en
Size: 21.5 MB

References

Train dataset available here

Benchmarking


       label precision recall  f1-score  support
   Chemistry      0.84   0.92      0.88      180
       Other      0.93   0.85      0.89      212
    accuracy         -      -      0.88      392
   macro-avg      0.88   0.89      0.88      392
weighted-avg      0.89   0.88      0.88      392