Description
European Union (EU) legislation is published in the EUR-Lex portal. All EU laws are annotated by the EU’s Publications Office with multiple concepts from the EuroVoc thesaurus, a multilingual thesaurus maintained by the Publications Office.
Given a document, the legclf_building_and_public_works_bert model, it is a Bert Sentence Embeddings Document Classifier, classifies if the document belongs to the class Building_and_Public_Works or not (Binary Classification) according to EuroVoc labels.
Predicted Entities
Building_and_Public_Works, Other
How to use
document_assembler = nlp.DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")
embeddings = nlp.BertSentenceEmbeddings.pretrained("sent_bert_base_cased", "en")\
    .setInputCols("document")\
    .setOutputCol("sentence_embeddings")
doc_classifier = legal.ClassifierDLModel.pretrained("legclf_building_and_public_works_bert", "en", "legal/models")\
    .setInputCols(["sentence_embeddings"])\
    .setOutputCol("category")
nlpPipeline = nlp.Pipeline(stages=[
    document_assembler, 
    embeddings,
    doc_classifier])
df = spark.createDataFrame([["YOUR TEXT HERE"]]).toDF("text")
model = nlpPipeline.fit(df)
result = model.transform(df)
Results
+-------+
|result|
+-------+
|[Building_and_Public_Works]|
|[Other]|
|[Other]|
|[Building_and_Public_Works]|
Model Information
| Model Name: | legclf_building_and_public_works_bert | 
| Compatibility: | Legal NLP 1.0.0+ | 
| License: | Licensed | 
| Edition: | Official | 
| Input Labels: | [sentence_embeddings] | 
| Output Labels: | [class] | 
| Language: | en | 
| Size: | 21.8 MB | 
References
Train dataset available here
Benchmarking
                    label precision recall  f1-score  support
Building_and_Public_Works      0.85   0.85      0.85       33
                    Other      0.87   0.87      0.87       39
                 accuracy         -      -      0.86       72
                macro-avg      0.86   0.86      0.86       72
             weighted-avg      0.86   0.86      0.86       72