Description
This pretrained model maps entities with their corresponding RxNorm codes according to the National Institute of Health (NIH) database. It returns Rxnorm codes with their NIH Rxnorm Term Types within a parenthesis.
Predicted Entities
rxnorm_code
How to use
document_assembler = DocumentAssembler()\
.setInputCol('text')\
.setOutputCol('document')
sentence_detector = SentenceDetector()\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols("sentence")\
.setOutputCol("token")
word_embeddings = WordEmbeddingsModel\
.pretrained("embeddings_clinical", "en", "clinical/models")\
.setInputCols(["sentence", "token"])\
.setOutputCol("embeddings")
posology_ner_model = MedicalNerModel\
.pretrained("ner_posology_greedy", "en", "clinical/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("posology_ner")
posology_ner_converter = NerConverterInternal()\
.setInputCols("sentence", "token", "posology_ner")\
.setOutputCol("ner_chunk")
chunkerMapper = ChunkMapperModel\
.pretrained("rxnorm_nih_mapper", "en", "clinical/models")\
.setInputCols(["ner_chunk"])\
.setOutputCol("mappings")\
.setRels(["rxnorm_code"])
mapper_pipeline = Pipeline().setStages([
document_assembler,
sentence_detector,
tokenizer,
word_embeddings,
posology_ner_model,
posology_ner_converter,
chunkerMapper])
test_data = spark.createDataFrame([["The patient was given Adapin 10 MG Oral Capsule, acetohexamide and Parlodel"]]).toDF("text")
mapper_model = mapper_pipeline.fit(test_data)
result= mapper_model.transform(test_data)
val document_assembler = new DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
val sentence_detector = new SentenceDetector()\
.setInputCols(Array("document"))\
.setOutputCol("sentence")
val tokenizer = new Tokenizer()\
.setInputCols("sentence")\
.setOutputCol("token")
val word_embeddings = WordEmbeddingsModel
.pretrained("embeddings_clinical", "en", "clinical/models")\
.setInputCols(Array("sentence", "token"))\
.setOutputCol("embeddings")
val posology_ner_model = MedicalNerModel
.pretrained("ner_posology_greedy", "en", "clinical/models")\
.setInputCols(Array("sentence", "token", "embeddings"))\
.setOutputCol("posology_ner")
val posology_ner_converter = new NerConverterInternal()\
.setInputCols("sentence", "token", "posology_ner")\
.setOutputCol("ner_chunk")
val chunkerMapper = ChunkMapperModel
.pretrained("rxnorm_nih_mapper", "en", "clinical/models")\
.setInputCols(Array("ner_chunk"))\
.setOutputCol("mappings")\
.setRels(Array("rxnorm_code"))
val mapper_pipeline = new Pipeline().setStages(Array(
document_assembler,
sentence_detector,
tokenizer,
word_embeddings,
posology_ner_model,
posology_ner_converter,
chunkerMapper))
val data = Seq("The patient was given Adapin 10 MG Oral Capsule, acetohexamide and Parlodel").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Results
+-------------------------+-------------+-----------+
|ner_chunk |mappings |relation |
+-------------------------+-------------+-----------+
|Adapin 10 MG Oral Capsule|1911002 (SY) |rxnorm_code|
|acetohexamide |12250421 (IN)|rxnorm_code|
|Parlodel |829 (BN) |rxnorm_code|
+-------------------------+-------------+-----------+
Model Information
Model Name: | rxnorm_nih_mapper |
Compatibility: | Healthcare NLP 4.3.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [chunk] |
Output Labels: | [mappings] |
Language: | en |
Size: | 10.3 MB |
References
Trained on February 2023 with NIH data: https://www.nlm.nih.gov/research/umls/rxnorm/docs/rxnormfiles.html