Description
The legclf_standstill_agreement_bert model is a Bert Sentence Embeddings Document Classifier used to classify if the document belongs to the class standstill-agreement or not (Binary Classification).
Unlike the Longformer model, this model is lighter in terms of inference time.
Predicted Entities
standstill-agreement, other
How to use
document_assembler = nlp.DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")
  
embeddings = nlp.BertSentenceEmbeddings.pretrained("sent_bert_base_cased", "en")\
    .setInputCols("document")\
    .setOutputCol("sentence_embeddings")
    
doc_classifier = legal.ClassifierDLModel.pretrained("legclf_standstill_agreement_bert", "en", "legal/models")\
    .setInputCols(["sentence_embeddings"])\
    .setOutputCol("category")
    
nlpPipeline = nlp.Pipeline(stages=[
    document_assembler, 
    embeddings,
    doc_classifier])
 
df = spark.createDataFrame([["YOUR TEXT HERE"]]).toDF("text")
model = nlpPipeline.fit(df)
result = model.transform(df)
Results
+-------+
|result|
+-------+
|[standstill-agreement]|
|[other]|
|[other]|
|[standstill-agreement]|
Model Information
| Model Name: | legclf_standstill_agreement_bert | 
| Compatibility: | Legal NLP 1.0.0+ | 
| License: | Licensed | 
| Edition: | Official | 
| Input Labels: | [sentence_embeddings] | 
| Output Labels: | [class] | 
| Language: | en | 
| Size: | 22.4 MB | 
References
Legal documents, scrapped from the Internet, and classified in-house + SEC documents
Benchmarking
               label  precision    recall  f1-score   support
               other       0.91      0.97      0.94        98
standstill-agreement       0.93      0.82      0.87        51
            accuracy          -         -      0.92       149
           macro-avg       0.92      0.90      0.91       149
        weighted-avg       0.92      0.92      0.92       149