Description
This model allows you to, given a Ticker, get the following information about a company at Nasdaq Stock Screener:
- Country
- IPO_Year
- Industry
- Last_Sale
- Market_Cap
- Name
- Net_Change
- Percent_Change
- Sector
- Ticker
- Volume
Firstly, you should get the TICKER symbol from the finance text with the finner_ticker
model, then you can get detailed information about the company with the ChunkMapper model.
Predicted Entities
How to use
document_assembler = nlp.DocumentAssembler()\
.setInputCol('text')\
.setOutputCol('document')
tokenizer = nlp.Tokenizer()\
.setInputCols("document")\
.setOutputCol("token")
embeddings = nlp.BertEmbeddings.pretrained("bert_embeddings_sec_bert_base","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")
ner_model = finance.NerModel.pretrained("finner_ticker", "en", "finance/models")\
.setInputCols(["document", "token", "embeddings"])\
.setOutputCol("ner")
ner_converter = nlp.NerConverter()\
.setInputCols(["document", "token", "ner"])\
.setOutputCol("ner_chunk")
CM = finance.ChunkMapperModel.pretrained('finmapper_nasdaq_ticker_stock_screener', 'en', 'finance/models')\
.setInputCols(["ner_chunk"])\
.setOutputCol("mappings")
pipeline = nlp.Pipeline().setStages([document_assembler,
tokenizer,
embeddings,
ner_model,
ner_converter,
CM])
text = ["""There are some serious purchases and sales of AMZN stock today."""]
test_data = spark.createDataFrame([text]).toDF("text")
model = pipeline.fit(test_data)
result = model.transform(test_data).select('mappings').collect()
Results
"Country": "United States",
"IPO_Year": "1997",
"Industry": "Catalog/Specialty Distribution",
"Last_Sale": "$98.12",
"Market_Cap": "9.98556270184E11",
"Name": "Amazon.com Inc. Common Stock",
"Net_Change": "2.85",
"Percent_Change": "2.991%",
"Sector": "Consumer Discretionary",
"Ticker": "AMZN",
"Volume": "85412563"
Model Information
Model Name: | finmapper_nasdaq_ticker_stock_screener |
Compatibility: | Finance NLP 1.0.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [ner_chunk] |
Output Labels: | [mappings] |
Language: | en |
Size: | 584.5 KB |
References
https://www.nasdaq.com/market-activity/stocks/screener