Legal Sentiment Analysis using Assertion Status (Sigma, ABSA dataset)

Description

This mode was trained to be benchmarked against the SigmaLaw’s official Aspect-based Sentiment Analysis model, based on ABSA dataset, where several parties were tagger with their sentiments in lega texts.

For more information a bout the annotation guidelines please check their official paper https://arxiv.org/pdf/2011.06326.pdf

Macro-F1 Reported by SigmaLaw:

  • TD-LSTM 0.564682
  • TC-LSTM 0.543762
  • AE-LSTM 0.558778
  • AT-LSTM 0.559181
  • ATAE-LSTM 0.580193
  • IAN 0.564990
  • MemNet 0.436025
  • Cabasc 0.564300
  • RAM 0.602201

Obtained with Legal NLP:

  • Assertion Status 0.637 (+0.035 compared to RAM, +0.08 in average)

More details here: https://arxiv.org/pdf/2011.06326.pdf

Predicted Entities

neutral, positive, negative

Copy S3 URI

How to use

document_assembler = nlp.DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

sentence_detector = nlp.SentenceDetector() \
    .setInputCols(["document"]) \
    .setOutputCol("sentence")

tokenizer = nlp.Tokenizer()\
    .setInputCols(["sentence"])\
    .setOutputCol("token")

embeddings = nlp.RoBertaEmbeddings.pretrained("roberta_embeddings_legal_roberta_base","en") \
    .setInputCols(["sentence", "token"]) \
    .setOutputCol("embeddings")

ner = legal.NerModel.pretrained("legner_sigma_absa_people", "en", "legal/models")\
        .setInputCols(["sentence", "token", "embeddings"])\
        .setOutputCol("ner")

ner_converter = nlp.NerConverter() \
    .setInputCols(["sentence", "token", "ner"]) \
    .setOutputCol("ner_chunk")

assertion = legal.AssertionDLModel.pretrained("legassertion_sigma_absa_sentiment", "en", "legal/models")\
    .setInputCols(["sentence", "ner_chunk", "embeddings"])\
    .setOutputCol("label")

pipe = nlp.Pipeline(stages = [ document_assembler, sentence_detector, tokenizer, embeddings, ner, ner_converter, assertion])

text = "Petitioner Jae Lee moved to the United States from South Korea with his parents when he was 13. He feared that a criminal conviction may affect his status."

Results

+------------------+---------+
|         ner_chunk|assertion|
+------------------+---------+
|Petitioner Jae Lee|  neutral|
|               his|  neutral|
|                he|  neutral|
|       He| negative|
|      his| negative|
+---------+---------+

Model Information

Model Name: legassertion_sigma_absa_sentiment
Compatibility: Legal NLP 1.0.0+
License: Licensed
Edition: Official
Input Labels: [document, chunk, embeddings]
Output Labels: [assertion]
Language: en
Size: 2.2 MB

References

https://metatext.io/datasets/sigmalaw-absa

Benchmarking

label	 tp	 fp	 fn	 prec	 rec	 f1
neutral	 36	 25	 32	 0.59016395	 0.5294118	 0.5581395
positive	 166	 111	 84	 0.599278	 0.664	 0.629981
negative	 236	 82	 102	 0.7421384	 0.69822484	 0.7195123
Macro-average 438 218 218 0.6438601 0.63054556 0.63713324
Micro-average 438 218 218 0.66768295 0.66768295 0.66768295