Detect Assertion Status from Response to Treatment

Description

This model detects the assertion status of entities related to response to treatment. The model identifies positive mentions (Present_Or_Past status), and hypothetical or absent mentions (Hypothetical_Or_Absent status).

Predicted Entities

Hypothetical_Or_Absent, Present_Or_Past

Live Demo Open in Colab Copy S3 URI

How to use

document_assembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")\
    .setInputCols(["document"])\
    .setOutputCol("sentence")

tokenizer = Tokenizer() \
    .setInputCols(["sentence"]) \
    .setOutputCol("token")

word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")\
    .setInputCols(["sentence", "token"]) \
    .setOutputCol("embeddings")                

ner = MedicalNerModel.pretrained("ner_oncology_wip", "en", "clinical/models") \
    .setInputCols(["sentence", "token", "embeddings"]) \
    .setOutputCol("ner")

ner_converter = NerConverter() \
    .setInputCols(["sentence", "token", "ner"]) \
    .setOutputCol("ner_chunk")\    
    .setWhiteList(["Response_To_Treatment"])
    
assertion = AssertionDLModel.pretrained("assertion_oncology_response_to_treatment_wip", "en", "clinical/models") \
    .setInputCols(["sentence", "ner_chunk", "embeddings"]) \
    .setOutputCol("assertion")
        
pipeline = Pipeline(stages=[document_assembler,
                            sentence_detector,
                            tokenizer,
                            word_embeddings,
                            ner,
                            ner_converter,
                            assertion])

data = spark.createDataFrame([["The patient presented no evidence of recurrence."]]).toDF("text")

result = pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")
    
val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")
    .setInputCols(Array("document"))
    .setOutputCol("sentence")
    
val tokenizer = new Tokenizer()
    .setInputCols(Array("sentence"))
    .setOutputCol("token")
    
val word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")
    .setInputCols(Array("sentence", "token"))
    .setOutputCol("embeddings")                
    
val ner = MedicalNerModel.pretrained("ner_oncology_wip", "en", "clinical/models")
    .setInputCols(Array("sentence", "token", "embeddings"))
    .setOutputCol("ner")
    
val ner_converter = new NerConverter()
    .setInputCols(Array("sentence", "token", "ner"))
    .setOutputCol("ner_chunk")
    .setWhiteList(Array("Response_To_Treatment"))

val clinical_assertion = AssertionDLModel.pretrained("assertion_oncology_response_to_treatment_wip","en","clinical/models")
    .setInputCols(Array("sentence","ner_chunk","embeddings"))
    .setOutputCol("assertion")
        
val pipeline = new Pipeline().setStages(Array(document_assembler,
                                              sentence_detector,
                                              tokenizer,
                                              word_embeddings,
                                              ner,
                                              ner_converter,
                                              assertion))

val data = Seq("""The patient presented no evidence of recurrence.""").toDF("text")

val result = pipeline.fit(data).transform(data)

import nlu
nlu.load("en.assert.oncology_response_to_treatment_wip").predict("""The patient presented no evidence of recurrence.""")

Results

| chunk      | ner_label             | assertion              |
|:-----------|:----------------------|:-----------------------|
| recurrence | Response_To_Treatment | Hypothetical_Or_Absent |

Model Information

Model Name: assertion_oncology_response_to_treatment_wip
Compatibility: Healthcare NLP 4.0.0+
License: Licensed
Edition: Official
Input Labels: [document, chunk, embeddings]
Output Labels: [assertion_pred]
Language: en
Size: 1.4 MB

References

In-house annotated oncology case reports.

Benchmarking

                 label  precision  recall  f1-score  support
Hypothetical_Or_Absent       0.82    0.90      0.86     61.0
       Present_Or_Past       0.89    0.80      0.84     61.0
             macro-avg       0.86    0.85      0.85    122.0
          weighted-avg       0.86    0.85      0.85    122.0