Detect Assertion Status from Oncology Entities

Description

This model detects the assertion status of entities related to oncology (including diagnoses, therapies and tests).

Predicted Entities

Absent, Family, Hypothetical, Past, Possible, Present

Live Demo Open in Colab Copy S3 URI

How to use

document_assembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")\
    .setInputCols(["document"])\
    .setOutputCol("sentence")

tokenizer = Tokenizer() \
    .setInputCols(["sentence"]) \
    .setOutputCol("token")

word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")\
    .setInputCols(["sentence", "token"]) \
    .setOutputCol("embeddings")                

ner = MedicalNerModel.pretrained("ner_oncology_wip", "en", "clinical/models") \
    .setInputCols(["sentence", "token", "embeddings"]) \
    .setOutputCol("ner")

ner_converter = NerConverter() \
    .setInputCols(["sentence", "token", "ner"]) \
    .setOutputCol("ner_chunk")\   
    .setWhiteList(["Cancer_Dx", "Tumor_Finding", "Cancer_Surgery", "Chemotherapy", "Pathology_Test", "Imaging_Test"])
    
assertion = AssertionDLModel.pretrained("assertion_oncology_wip", "en", "clinical/models") \
    .setInputCols(["sentence", "ner_chunk", "embeddings"]) \
    .setOutputCol("assertion")
        
pipeline = Pipeline(stages=[document_assembler,
                            sentence_detector,
                            tokenizer,
                            word_embeddings,
                            ner,
                            ner_converter,
                            assertion])

data = spark.createDataFrame([["The patient is suspected to have breast cancer. Family history is positive for other cancers. The result of the biopsy was positive."]]).toDF("text")

result = pipeline.fit(data).transform(data)

val document_assembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")
    
val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")
    .setInputCols(Array("document"))
    .setOutputCol("sentence")
    
val tokenizer = new Tokenizer()
    .setInputCols(Array("sentence"))
    .setOutputCol("token")
    
val word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")
    .setInputCols(Array("sentence", "token"))
    .setOutputCol("embeddings")                
    
val ner = MedicalNerModel.pretrained("ner_oncology_wip", "en", "clinical/models")
    .setInputCols(Array("sentence", "token", "embeddings"))
    .setOutputCol("ner")
    
val ner_converter = new NerConverter()
    .setInputCols(Array("sentence", "token", "ner"))
    .setOutputCol("ner_chunk")
    .setWhiteList(Array("Cancer_Dx", "Tumor_Finding", "Cancer_Surgery", "Chemotherapy", "Pathology_Test", "Imaging_Test"))

val clinical_assertion = AssertionDLModel.pretrained("assertion_oncology_wip","en","clinical/models")
    .setInputCols(Array("sentence","ner_chunk","embeddings"))
    .setOutputCol("assertion")
        
val pipeline = new Pipeline().setStages(Array(document_assembler,
                                              sentence_detector,
                                              tokenizer,
                                              word_embeddings,
                                              ner,
                                              ner_converter,
                                              assertion))

val data = Seq("""The patient is suspected to have breast cancer. Family history is positive for other cancers. The result of the biopsy was positive.""").toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.assert.oncology_wip").predict("""The patient is suspected to have breast cancer. Family history is positive for other cancers. The result of the biopsy was positive.""")

Results

| chunk         | ner_label      | assertion   |
|:--------------|:---------------|:------------|
| breast cancer | Cancer_Dx      | Possible    |
| cancers       | Cancer_Dx      | Family      |
| biopsy        | Pathology_Test | Past        |

Model Information

Model Name: assertion_oncology_wip
Compatibility: Healthcare NLP 4.1.0+
License: Licensed
Edition: Official
Input Labels: [document, chunk, embeddings]
Output Labels: [assertion_pred]
Language: en
Size: 1.4 MB

References

In-house annotated oncology case reports.

Benchmarking

       label  precision  recall  f1-score  support
      Absent       0.81    0.77      0.79    264.0
      Family       0.78    0.82      0.80     34.0
Hypothetical       0.67    0.61      0.64    182.0
        Past       0.91    0.93      0.92   1583.0
    Possible       0.59    0.59      0.59     51.0
     Present       0.89    0.89      0.89   1645.0
   macro-avg       0.77    0.77      0.77   3759.0
weighted-avg       0.88    0.88      0.88   3759.0