Detect Assertion Status from Smoking Status Entity

Description

This model detects the assertion status of the Smoking_Status entity. It classifies extractions as Present, Past or Absent.

Predicted Entities

Absent, Past, Present

Live Demo Open in Colab Copy S3 URI

How to use

document_assembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")\
    .setInputCols(["document"])\
    .setOutputCol("sentence")

tokenizer = Tokenizer() \
    .setInputCols(["sentence"]) \
    .setOutputCol("token")

word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")\
    .setInputCols(["sentence", "token"]) \
    .setOutputCol("embeddings")                

ner = MedicalNerModel.pretrained("ner_oncology_wip", "en", "clinical/models") \
    .setInputCols(["sentence", "token", "embeddings"]) \
    .setOutputCol("ner")

ner_converter = NerConverter() \
    .setInputCols(["sentence", "token", "ner"]) \
    .setOutputCol("ner_chunk")\    
    .setWhiteList(["Smoking_Status"])
    
assertion = AssertionDLModel.pretrained("assertion_oncology_smoking_status_wip", "en", "clinical/models") \
    .setInputCols(["sentence", "ner_chunk", "embeddings"]) \
    .setOutputCol("assertion")
        
pipeline = Pipeline(stages=[document_assembler,
                            sentence_detector,
                            tokenizer,
                            word_embeddings,
                            ner,
                            ner_converter,
                            assertion])

data = spark.createDataFrame([["The patient quit smoking three years ago."]]).toDF("text")

result = pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")
    
val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")
    .setInputCols(Array("document"))
    .setOutputCol("sentence")
    
val tokenizer = new Tokenizer()
    .setInputCols(Array("sentence"))
    .setOutputCol("token")
    
val word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")
    .setInputCols(Array("sentence", "token"))
    .setOutputCol("embeddings")                
    
val ner = MedicalNerModel.pretrained("ner_oncology_wip", "en", "clinical/models")
    .setInputCols(Array("sentence", "token", "embeddings"))
    .setOutputCol("ner")
    
val ner_converter = new NerConverter()
    .setInputCols(Array("sentence", "token", "ner"))
    .setOutputCol("ner_chunk")
    .setWhiteList(Array("Smoking_Status"))

val clinical_assertion = AssertionDLModel.pretrained("assertion_oncology_smoking_status_wip","en","clinical/models")
    .setInputCols(Array("sentence","ner_chunk","embeddings"))
    .setOutputCol("assertion")
        
val pipeline = new Pipeline().setStages(Array(document_assembler,
                                              sentence_detector,
                                              tokenizer,
                                              word_embeddings,
                                              ner,
                                              ner_converter,
                                              assertion))

val data = Seq("""The patient quit smoking three years ago.""").toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.assert.oncology_smoking_status").predict("""The patient quit smoking three years ago.""")

Results

| chunk   | ner_label      | assertion   |
|:--------|:---------------|:------------|
| smoking | Smoking_Status | Past        |

Model Information

Model Name: assertion_oncology_smoking_status_wip
Compatibility: Healthcare NLP 4.1.0+
License: Licensed
Edition: Official
Input Labels: [document, chunk, embeddings]
Output Labels: [assertion_pred]
Language: en
Size: 1.4 MB

References

In-house annotated oncology case reports.

Benchmarking

       label  precision  recall  f1-score  support
      Absent       0.75    1.00      0.86     12.0
        Past       0.78    0.93      0.85     15.0
     Present       1.00    0.46      0.63     13.0
   macro-avg       0.84    0.80      0.78     40.0
weighted-avg       0.84    0.80      0.78     40.0