Detect Assertion Status from Entities Related to Cancer Diagnosis

Description

This model detects the assertion status of entities related to cancer diagnosis (including Metastasis, Cancer_Dx and Tumor_Finding, among others).

Predicted Entities

Absent, Family, Hypothetical, Possible, Present

Live Demo Open in Colab Copy S3 URI

How to use

document_assembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")\
    .setInputCols(["document"])\
    .setOutputCol("sentence")

tokenizer = Tokenizer() \
    .setInputCols(["sentence"]) \
    .setOutputCol("token")

word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")\
    .setInputCols(["sentence", "token"]) \
    .setOutputCol("embeddings")                

ner = MedicalNerModel.pretrained("ner_oncology_wip", "en", "clinical/models") \
    .setInputCols(["sentence", "token", "embeddings"]) \
    .setOutputCol("ner")

ner_converter = NerConverter() \
    .setInputCols(["sentence", "token", "ner"]) \
    .setOutputCol("ner_chunk")\
    .setWhiteList(["Cancer_Dx"])
    
    
assertion = AssertionDLModel.pretrained("assertion_oncology_problem_wip", "en", "clinical/models") \
    .setInputCols(["sentence", "ner_chunk", "embeddings"]) \
    .setOutputCol("assertion")
        
pipeline = Pipeline(stages=[document_assembler,
                            sentence_detector,
                            tokenizer,
                            word_embeddings,
                            ner,
                            ner_converter,
                            assertion])

data = spark.createDataFrame([["""The patient was diagnosed with breast cancer. Her family history is positive for other cancers."""]]).toDF("text")

result = pipeline.fit(data).transform(data)

val document_assembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")
    
val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")
    .setInputCols(Array("document"))
    .setOutputCol("sentence")
    
val tokenizer = new Tokenizer()
    .setInputCols(Array("sentence"))
    .setOutputCol("token")
    
val word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")
    .setInputCols(Array("sentence", "token"))
    .setOutputCol("embeddings")                
    
val ner = MedicalNerModel.pretrained("ner_oncology_wip", "en", "clinical/models")
    .setInputCols(Array("sentence", "token", "embeddings"))
    .setOutputCol("ner")
    
val ner_converter = new NerConverter()
    .setInputCols(Array("sentence", "token", "ner"))
    .setOutputCol("ner_chunk")
    .setWhiteList(Array("Cancer_Dx"))

val clinical_assertion = AssertionDLModel.pretrained("assertion_oncology_problem_wip","en","clinical/models")
    .setInputCols(Array("sentence","ner_chunk","embeddings"))
    .setOutputCol("assertion")
        
val pipeline = new Pipeline().setStages(Array(document_assembler,
                                              sentence_detector,
                                              tokenizer,
                                              word_embeddings,
                                              ner,
                                              ner_converter,
                                              assertion))

val data = Seq("""The patient was diagnosed with breast cancer. Her family history is positive for other cancers.""").toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.assert.oncology_problem_wip").predict("""The patient was diagnosed with breast cancer. Her family history is positive for other cancers.""")

Results

| chunk         | ner_label   | assertion       |
|:--------------|:------------|:----------------|
| breast cancer | Cancer_Dx   | Medical_History |
| cancers       | Cancer_Dx   | Family_History  |

Model Information

Model Name: assertion_oncology_problem_wip
Compatibility: Healthcare NLP 4.1.0+
License: Licensed
Edition: Official
Input Labels: [document, chunk, embeddings]
Output Labels: [assertion_pred]
Language: en
Size: 1.4 MB

References

In-house annotated oncology case reports.

Benchmarking

       label  precision  recall  f1-score  support
      Absent       0.88    0.87      0.87    154.0
      Family       0.67    1.00      0.80      8.0
Hypothetical       0.81    0.77      0.79     77.0
    Possible       0.62    0.61      0.62     54.0
     Present       0.78    0.79      0.78    155.0
   macro-avg       0.75    0.81      0.77    448.0
weighted-avg       0.80    0.79      0.79    448.0