Description
This Named Entity Recognition model is intended for detecting relevant entities from Spanish medical texts and trained using the BertForTokenClassification method from the transformers library and BERT based embeddings. The model detects Negation Trigger (NEG), Negation Scope (NSCO), Uncertainty Trigger (UNC) and Uncertainty Scope (USCO).
Predicted Entities
NEG
, NSCO
, UNC
, USCO
How to use
documentAssembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained()\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols("sentence")\
.setOutputCol("token")
tokenClassifier = MedicalBertForTokenClassifier.pretrained("bert_token_classifier_negation_uncertainty", "es", "clinical/models")\
.setInputCols("token", "sentence")\
.setOutputCol("label")\
.setCaseSensitive(True)
ner_converter = NerConverter()\
.setInputCols(["sentence","token","label"])\
.setOutputCol("ner_chunk")
pipeline = Pipeline(stages=[
documentAssembler,
sentenceDetector,
tokenizer,
tokenClassifier,
ner_converter])
model = pipeline.fit(spark.createDataFrame([[""]]).toDF("text"))
data = spark.createDataFrame(["Con diagnóstico probable de cirrosis hepática (no conocida previamente) y peritonitis espontanea primaria con tratamiento durante 8 dias con ceftriaxona en el primer ingreso (no se realizó paracentesis control por escasez de liquido). Lesión tumoral en hélix izquierdo de 0,5 cms. de diámetro susceptible de ca basocelular perlado."], StringType()).toDF("text")
result = model.transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained()
.setInputCols("document")
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols("sentence")
.setOutputCol("token")
val tokenClassifier = MedicalBertForTokenClassifier.pretrained("bert_token_classifier_negation_uncertainty", "es", "clinical/models")
.setInputCols(Array("token", "sentence"))
.setOutputCol("label")
.setCaseSensitive(True)
val ner_converter = new NerConverter()
.setInputCols(Array("sentence","token","label"))
.setOutputCol("ner_chunk")
val pipeline = new Pipeline().setStages(Array(
documentAssembler,
sentenceDetector,
tokenizer,
tokenClassifier,
ner_converter))
val data = Seq(Array("""Con diagnóstico probable de cirrosis hepática (no conocida previamente) y peritonitis espontanea primaria con tratamiento durante 8 dias con ceftriaxona en el primer ingreso (no se realizó paracentesis control por escasez de liquido). Lesión tumoral en hélix izquierdo de 0,5 cms. de diámetro susceptible de ca basocelular perlado.""")).toDS().toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("es.classify.bert_token.negation_uncertainty").predict("""Con diagnóstico probable de cirrosis hepática (no conocida previamente) y peritonitis espontanea primaria con tratamiento durante 8 dias con ceftriaxona en el primer ingreso (no se realizó paracentesis control por escasez de liquido). Lesión tumoral en hélix izquierdo de 0,5 cms. de diámetro susceptible de ca basocelular perlado.""")
Results
+------------------------------------------------------+---------+
|chunk |ner_label|
+------------------------------------------------------+---------+
|probable |UNC |
|de cirrosis hepática |USCO |
|no |NEG |
|conocida previamente |NSCO |
|no |NEG |
|se realizó paracentesis control por escasez de liquido|NSCO |
|susceptible de |UNC |
|ca basocelular perlado |USCO |
+------------------------------------------------------+---------+
Model Information
Model Name: | bert_token_classifier_negation_uncertainty |
Compatibility: | Healthcare NLP 4.0.2+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [ner] |
Language: | es |
Size: | 410.0 MB |
Case sensitive: | true |
Max sentence length: | 512 |
References
The model is prepared using the reference paper: “NLP applied to occupational health: MEDDOPROF shared task at IberLEF 2021 on automatic recognition, classification and normalization of professions and occupations from medical texts”, Salvador Lima-Lopez, Eulalia Farr ́e-Maduell, Antonio Miranda-Escalada, Vicent Briva-Iglesias and Martin Krallinger. Procesamiento del Lenguaje Natural, Revista nº 67, septiembre de 2021, pp. 243-256.
Benchmarking
label precision recall f1-score support
B-NEG 0.9599 0.9667 0.9633 1833
I-NEG 0.9216 0.9276 0.9246 152
B-UNC 0.9040 0.8898 0.8968 508
I-UNC 0.8772 0.8242 0.8499 182
B-USCO 0.9164 0.8983 0.9073 708
I-USCO 0.8473 0.8596 0.8534 2350
B-NSCO 0.9475 0.9560 0.9517 2022
I-NSCO 0.9323 0.9345 0.9334 5774
micro-avg 0.9207 0.9239 0.9223 13529
macro-avg 0.9133 0.9071 0.9101 13529
weighted-avg 0.9208 0.9239 0.9223 13529