Description
This model is a bert-base-german based sequence classification model that can classify public health mentions in German social media text.
Predicted Entities
non-health
, health-related
How to use
document_assembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols(["document"]) \
.setOutputCol("token")
sequenceClassifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_health_mentions_bert", "de", "clinical/models")\
.setInputCols(["document","token"])\
.setOutputCol("class")
pipeline = Pipeline(stages=[
document_assembler,
tokenizer,
sequenceClassifier
])
data = spark.createDataFrame([
["Die Temperaturen klettern am Wochenende."],
["Zu den Symptomen gehört u.a. eine verringerte Greifkraft."]
]).toDF("text")
result = pipeline.fit(data).transform(data)
val documenter = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val sequenceClassifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_health_mentions_bert", "de", "clinical/models")
.setInputCols(Array("document","token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documenter, tokenizer, sequenceClassifier))
val data = Seq(Array("Die Temperaturen klettern am Wochenende.",
"Zu den Symptomen gehört u.a. eine verringerte Greifkraft.")).toDS().toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("de.classify.bert_sequence.health_mentions_bert").predict("""Zu den Symptomen gehört u.a. eine verringerte Greifkraft.""")
Results
+---------------------------------------------------------+----------------+
|text |result |
+---------------------------------------------------------+----------------+
|Die Temperaturen klettern am Wochenende. |[non-health] |
|Zu den Symptomen gehört u.a. eine verringerte Greifkraft.|[health-related]|
+---------------------------------------------------------+----------------+
Model Information
Model Name: | bert_sequence_classifier_health_mentions_bert |
Compatibility: | Healthcare NLP 4.0.2+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | de |
Size: | 409.8 MB |
Case sensitive: | true |
Max sentence length: | 128 |
References
Curated from several academic and in-house datasets.
Benchmarking
label precision recall f1-score support
non-health 0.99 0.90 0.94 82
health-related 0.89 0.99 0.94 69
accuracy - - 0.94 151
macro-avg 0.94 0.94 0.94 151
weighted-avg 0.94 0.94 0.94 151