Generic Deidentification NER

Description

This is a NER model which allows you to detect some generic entities that may require to be masked or obfuscated to be compliant with different regulations, as GDPR and CCPA. This is just an NER model, make sure you try the full De-identification pipelines available in Models Hub.

Predicted Entities

AGE, CITY, COUNTRY, DATE, EMAIL, FAX, LOCATION-OTHER, ORG, PERSON, PHONE, PROFESSION, STATE, STREET, URL, ZIP

Live Demo Copy S3 URI

How to use

documentAssembler = nlp.DocumentAssembler()\
        .setInputCol("text")\
        .setOutputCol("document")
        
sentenceDetector = nlp.SentenceDetectorDLModel.pretrained("sentence_detector_dl","xx")\
        .setInputCols(["document"])\
        .setOutputCol("sentence")

tokenizer = nlp.Tokenizer()\
        .setInputCols(["sentence"])\
        .setOutputCol("token")

embeddings = nlp.RoBertaEmbeddings.pretrained("roberta_embeddings_legal_roberta_base","en") \
    .setInputCols(["sentence", "token"]) \
    .setOutputCol("embeddings")

ner_model = legal.NerModel.pretrained('legner_deid', "en", "legal/models")\
        .setInputCols(["sentence", "token", "embeddings"])\
        .setOutputCol("ner")

ner_converter = nlp.NerConverter()\
        .setInputCols(["sentence","token","ner"])\
        .setOutputCol("ner_chunk")

nlpPipeline = nlp.Pipeline(stages=[
        documentAssembler,
        sentenceDetector,
        tokenizer,
        embeddings,
        ner_model,
        ner_converter])

empty_data = spark.createDataFrame([[""]]).toDF("text")

model = nlpPipeline.fit(empty_data)

text = ["""
This LICENSE AND DEVELOPMENT AGREEMENT (this Agreement) is entered into effective as of Nov. 02, 2019 (the Effective Date) by and between Bioeq IP AG, having its principal place of business at 333 Twin Dolphin Drive, Suite 600, Redwood City, CA, 94065, USA (Licensee).
"""]

res = model.transform(spark.createDataFrame([text]).toDF("text"))

Results

+-----------+----------------+
|      token|       ner_label|
+-----------+----------------+
|       This|               O|
|    LICENSE|               O|
|        AND|               O|
|DEVELOPMENT|               O|
|  AGREEMENT|               O|
|          (|               O|
|       this|               O|
|  Agreement|               O|
|          )|               O|
|         is|               O|
|    entered|               O|
|       into|               O|
|  effective|               O|
|         as|               O|
|         of|               O|
|        Nov|          B-DATE|
|          .|          I-DATE|
|         02|          I-DATE|
|          ,|          I-DATE|
|       2019|          I-DATE|
|          (|               O|
|        the|               O|
|  Effective|               O|
|       Date|               O|
|          )|               O|
|         by|               O|
|        and|               O|
|    between|               O|
|      Bioeq|               O|
|         IP|               O|
|         AG|               O|
|          ,|               O|
|     having|               O|
|        its|               O|
|  principal|               O|
|      place|               O|
|         of|               O|
|   business|               O|
|         at|               O|
|        333|        B-STREET|
|       Twin|        I-STREET|
|    Dolphin|        I-STREET|
|      Drive|        I-STREET|
|          ,|               O|
|      Suite|B-LOCATION-OTHER|
|        600|I-LOCATION-OTHER|
|          ,|               O|
|    Redwood|          B-CITY|
|       City|          I-CITY|
|          ,|               O|
|         CA|         B-STATE|
|          ,|               O|
|      94065|           B-ZIP|
|          ,|               O|
|        USA|         B-STATE|
|          (|               O|
|   Licensee|               O|
|         ).|               O|
+-----------+----------------+

Model Information

Model Name: legner_deid
Type: legal
Compatibility: Legal NLP 1.0.0+
License: Licensed
Edition: Official
Input Labels: [sentence, token, embeddings]
Output Labels: [ner]
Language: en
Size: 16.4 MB

References

In-house annotated documents with protected information

Benchmarking

           label  precision    recall  f1-score   support
           B-AGE       0.96      0.89      0.92       245
          B-CITY       0.85      0.86      0.86       123
       B-COUNTRY       0.86      0.67      0.75        36
          B-DATE       0.98      0.97      0.97      2352
           B-ORG       0.75      0.71      0.73        38
        B-PERSON       0.97      0.94      0.95      1348
         B-PHONE       0.86      0.80      0.83        86
    B-PROFESSION       0.93      0.75      0.83        84
         B-STATE       0.92      0.89      0.91       102
        B-STREET       0.99      0.91      0.95        89
          I-CITY       0.82      0.77      0.79        35
       I-COUNTRY       1.00      0.50      0.67         6
          I-DATE       0.96      0.95      0.96       402
           I-ORG       0.71      0.86      0.77        28
        I-PERSON       0.98      0.96      0.97      1240
         I-PHONE       0.91      0.92      0.92        77
    I-PROFESSION       0.96      0.79      0.87        70
         I-STATE       1.00      0.62      0.77         8
        I-STREET       0.98      0.94      0.96       188
           I-ZIP       0.84      0.97      0.90        60
               O       1.00      1.00      1.00    194103
        accuracy         -         -       1.00    200762
       macro-avg       0.72      0.62      0.65    200762
    weighted-avg       1.00      1.00      1.00    200762