Description
This model is a BioBERT based classifier that can identify stress in social media (Twitter) posts in the self-disclosure category. The model finds whether a person claims he/she is stressed or not.
Predicted Entities
not-stressed
, stressed
Live Demo Open in Colab Copy S3 URI
How to use
document_assembler = DocumentAssembler() \
.setInputCol('text') \
.setOutputCol('document')
tokenizer = Tokenizer() \
.setInputCols(['document']) \
.setOutputCol('token')
sequenceClassifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_self_reported_stress_tweet", "en", "clinical/models")\
.setInputCols(["document",'token'])\
.setOutputCol("class")
pipeline = Pipeline(stages=[
document_assembler,
tokenizer,
sequenceClassifier
])
data = spark.createDataFrame([["Do you feel stressed?"],
["I'm so stressed!"],
["Depression and anxiety will probably end up killing me – I feel so stressed all the time and just feel awful."],
["Do you enjoy living constantly in this self-inflicted stress?"]]).toDF("text")
result = pipeline.fit(data).transform(data)
result.select("text", "class.result").show(truncate=False)
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val sequenceClassifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_self_reported_stress_tweet", "en", "clinical/models")
.setInputCols(Array("document","token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))
val data = Seq(Array("Do you feel stressed!",
"I'm so stressed!",
"Depression and anxiety will probably end up killing me – I feel so stressed all the time and just feel awful.",
"Do you enjoy living constantly in this self-inflicted stress?")).toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.self_reported_stress").predict("""Depression and anxiety will probably end up killing me – I feel so stressed all the time and just feel awful.""")
Results
+-------------------------------------------------------------------------------------------------------------+--------------+
|text |result |
+-------------------------------------------------------------------------------------------------------------+--------------+
|Do you feel stressed? |[not-stressed]|
|I'm so stressed! |[stressed] |
|Depression and anxiety will probably end up killing me – I feel so stressed all the time and just feel awful.|[stressed] |
|Do you enjoy living constantly in this self-inflicted stress? |[not-stressed]|
+-------------------------------------------------------------------------------------------------------------+--------------+
Model Information
Model Name: | bert_sequence_classifier_self_reported_stress_tweet |
Compatibility: | Healthcare NLP 4.0.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | en |
Size: | 406.5 MB |
Case sensitive: | true |
Max sentence length: | 128 |
Benchmarking
label precision recall f1-score support
not-stressed 0.8564 0.8020 0.8283 409
stressed 0.7197 0.7909 0.7536 263
accuracy - - 0.7976 672
macro-avg 0.7881 0.7964 0.7910 672
weighted-avg 0.8029 0.7976 0.7991 672