Description
This pretrained model maps drug brand names to corresponding National Drug Codes (NDC). Product NDCs for each strength are returned in result and metadata.
Predicted Entities
Strength_NDC
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("chunk")
chunkerMapper = ChunkMapperModel.pretrained("drug_brandname_ndc_mapper", "en", "clinical/models")\
.setInputCols(["chunk"])\
.setOutputCol("ndc")\
.setRels(["Strength_NDC"])\
.setLowerCase(True)
pipeline = Pipeline().setStages([
document_assembler,
chunkerMapper])
model = pipeline.fit(spark.createDataFrame([[""]]).toDF("text"))
light_pipeline = LightPipeline(model)
result = light_pipeline.fullAnnotate(["zytiga", "zyvana", "ZYVOX"])
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("chunk")
val chunkerMapper = ChunkMapperModel.pretrained("drug_brandname_ndc_mapper", "en", "clinical/models")
.setInputCols(Array("chunk"))
.setOutputCol("ndc")
.setRels(Array("Strength_NDC"))
.setLowerCase(True)
val pipeline = new Pipeline().setStages(Array(
document_assembler,
chunkerMapper))
val sample_data = Seq("zytiga", "zyvana", "ZYVOX").toDS.toDF("text")
val result = pipeline.fit(sample_data).transform(sample_data)
import nlu
nlu.load("en.map_entity.drug_brand_to_ndc").predict("""Put your text here.""")
Results
| | Brandname | Strength_NDC |
|---:|:------------|:-------------------------|
| 0 | zytiga | 500 mg/1 | 57894-195 |
| 1 | zyvana | 527 mg/1 | 69336-405 |
| 2 | ZYVOX | 600 mg/300mL | 0009-4992 |
Model Information
Model Name: | drug_brandname_ndc_mapper |
Compatibility: | Healthcare NLP 3.5.3+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [chunk] |
Output Labels: | [mappings] |
Language: | en |
Size: | 3.0 MB |