Thai BertForQuestionAnswering model (from airesearch)

Description

Pretrained Question Answering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-base-multilingual-cased-finetune-qa is a Thai model orginally trained by airesearch.

Download Copy S3 URICopied!

How to use

document_assembler = MultiDocumentAssembler() \ 
.setInputCols(["question", "context"]) \
.setOutputCols(["document_question", "document_context"])

spanClassifier = BertForQuestionAnswering.pretrained("bert_qa_bert_base_multilingual_cased_finetune_qa","th") \
.setInputCols(["document_question", "document_context"]) \
.setOutputCol("answer") \
.setCaseSensitive(True)

pipeline = Pipeline().setStages([
document_assembler,
spanClassifier
])

example = spark.createDataFrame([["What's my name?", "My name is Clara and I live in Berkeley."]]).toDF("question", "context")

result = pipeline.fit(example).transform(example)

Model Information

Model Name: bert_qa_bert_base_multilingual_cased_finetune_qa
Compatibility: Spark NLP 4.0.0+
License: Open Source
Edition: Official
Input Labels: [sentence, token]
Output Labels: [embeddings]
Language: th
Size: 665.6 MB
Case sensitive: true
Max sentence length: 512

References

  • https://huggingface.co/airesearch/bert-base-multilingual-cased-finetune-qa
  • https://github.com/vistec-AI/thai2transformers/blob/dev/scripts/downstream/train_question_answering_lm_finetuning.py
  • https://wandb.ai/cstorm125/wangchanberta-qa