Description
Pretrained Bert Embeddings model, uploaded to Hugging Face, adapted and imported into Spark NLP. dpr-spanish-question_encoder-squades-base
is a Spanish model orginally trained by IIC
.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
embeddings = BertEmbeddings.pretrained("bert_embeddings_dpr_spanish_question_encoder_squades_base","es") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["Me encanta chispa nlp"]]).toDF("text")
result = pipeline.fit(data).transform(data)
Model Information
Model Name: | bert_embeddings_dpr_spanish_question_encoder_squades_base |
Compatibility: | Spark NLP 3.4.2+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [bert] |
Language: | es |
Size: | 412.4 MB |
Case sensitive: | true |
References
- https://huggingface.co/IIC/dpr-spanish-question_encoder-squades-base
- https://arxiv.org/abs/2004.04906
- https://github.com/facebookresearch/DPR
- https://paperswithcode.com/sota?task=text+similarity&dataset=squad_es